Cargando…

NAD(+) analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains

PARP-1 cleaves NAD(+) and transfers the resulting ADP-ribose moiety onto target proteins and onto subsequent polymers of ADP-ribose. An allosteric network connects PARP-1 multi-domain detection of DNA damage to catalytic domain structural changes that relieve catalytic autoinhibition; however, the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Langelier, Marie-France, Zandarashvili, Levani, Aguiar, Pedro M., Black, Ben E., Pascal, John M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829251/
https://www.ncbi.nlm.nih.gov/pubmed/29487285
http://dx.doi.org/10.1038/s41467-018-03234-8
Descripción
Sumario:PARP-1 cleaves NAD(+) and transfers the resulting ADP-ribose moiety onto target proteins and onto subsequent polymers of ADP-ribose. An allosteric network connects PARP-1 multi-domain detection of DNA damage to catalytic domain structural changes that relieve catalytic autoinhibition; however, the mechanism of autoinhibition is undefined. Here, we show using the non-hydrolyzable NAD(+) analog benzamide adenine dinucleotide (BAD) that PARP-1 autoinhibition results from a selective block on NAD(+) binding. Following DNA damage detection, BAD binding to the catalytic domain leads to changes in PARP-1 dynamics at distant DNA-binding surfaces, resulting in increased affinity for DNA damage, and providing direct evidence of reverse allostery. Our findings reveal a two-step mechanism to activate and to then stabilize PARP-1 on a DNA break, indicate that PARP-1 allostery influences persistence on DNA damage, and have important implications for PARP inhibitors that engage the NAD(+) binding site.