Cargando…

Phosphatase PP2A and microtubule-mediated pulling forces disassemble centrosomes during mitotic exit

Centrosomes are microtubule-nucleating organelles that facilitate chromosome segregation and cell division in metazoans. Centrosomes comprise centrioles that organize a micron-scale mass of protein called pericentriolar material (PCM) from which microtubules nucleate. During each cell cycle, PCM acc...

Descripción completa

Detalles Bibliográficos
Autores principales: Enos, Stephen J., Dressler, Martin, Gomes, Beatriz Ferreira, Hyman, Anthony A., Woodruff, Jeffrey B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829501/
https://www.ncbi.nlm.nih.gov/pubmed/29222174
http://dx.doi.org/10.1242/bio.029777
Descripción
Sumario:Centrosomes are microtubule-nucleating organelles that facilitate chromosome segregation and cell division in metazoans. Centrosomes comprise centrioles that organize a micron-scale mass of protein called pericentriolar material (PCM) from which microtubules nucleate. During each cell cycle, PCM accumulates around centrioles through phosphorylation-mediated assembly of PCM scaffold proteins. During mitotic exit, PCM swiftly disassembles by an unknown mechanism. Here, we used Caenorhabditis elegans embryos to determine the mechanism and importance of PCM disassembly in dividing cells. We found that the phosphatase PP2A and its regulatory subunit SUR-6 (PP2A(SUR-6)), together with cortically directed microtubule pulling forces, actively disassemble PCM. In embryos depleted of these activities, ∼25% of PCM persisted from one cell cycle into the next. Purified PP2A(SUR-6) could dephosphorylate the major PCM scaffold protein SPD-5 in vitro. Our data suggest that PCM disassembly occurs through a combination of dephosphorylation of PCM components and force-driven fragmentation of the PCM scaffold.