Cargando…
Phase-plate cryo-EM structure of a class B GPCR-G protein complex
Class B G protein-coupled receptors are major targets for treatment of chronic diseases, including osteoporosis, diabetes and obesity. Here we report the structure of a full-length class B receptor, the calcitonin receptor, in complex with peptide ligand and heterotrimeric Gαβγs protein determined b...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832441/ https://www.ncbi.nlm.nih.gov/pubmed/28437792 http://dx.doi.org/10.1038/nature22327 |
Sumario: | Class B G protein-coupled receptors are major targets for treatment of chronic diseases, including osteoporosis, diabetes and obesity. Here we report the structure of a full-length class B receptor, the calcitonin receptor, in complex with peptide ligand and heterotrimeric Gαβγs protein determined by Volta phase plate single-particle cryo-electron microscopy. The peptide agonist engages the receptor through binding to an extended hydrophobic pocket facilitated by the large outward movement of the extracellular ends of transmembrane helices 6 and 7. This conformation is accompanied by a 60° kink in helix 6 and large outward movement of the intracellular end of this helix, opening the bundle to accommodate interactions with the α5-helix of Gαs. Also observed is an extended intracellular helix 8 that contributes to both receptor stability and functional G protein coupling via interaction with the Gβ subunit. This structure provides a new framework for understanding G protein-coupled receptor function. |
---|