Cargando…
A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans
Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modifi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832965/ https://www.ncbi.nlm.nih.gov/pubmed/29062088 http://dx.doi.org/10.1038/s41564-017-0043-0 |
_version_ | 1783303395305586688 |
---|---|
author | Shapiro, Rebecca S. Chavez, Alejandro Porter, Caroline B. M. Hamblin, Meagan Kaas, Christian S. DiCarlo, James E. Zeng, Guisheng Xu, Xiaoli Revtovich, Alexey V. Kirienko, Natalia V. Wang, Yue Church, George M. Collins, James J. |
author_facet | Shapiro, Rebecca S. Chavez, Alejandro Porter, Caroline B. M. Hamblin, Meagan Kaas, Christian S. DiCarlo, James E. Zeng, Guisheng Xu, Xiaoli Revtovich, Alexey V. Kirienko, Natalia V. Wang, Yue Church, George M. Collins, James J. |
author_sort | Shapiro, Rebecca S. |
collection | PubMed |
description | Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. |
format | Online Article Text |
id | pubmed-5832965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-58329652018-04-23 A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans Shapiro, Rebecca S. Chavez, Alejandro Porter, Caroline B. M. Hamblin, Meagan Kaas, Christian S. DiCarlo, James E. Zeng, Guisheng Xu, Xiaoli Revtovich, Alexey V. Kirienko, Natalia V. Wang, Yue Church, George M. Collins, James J. Nat Microbiol Article Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. 2017-10-23 2018-01 /pmc/articles/PMC5832965/ /pubmed/29062088 http://dx.doi.org/10.1038/s41564-017-0043-0 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Shapiro, Rebecca S. Chavez, Alejandro Porter, Caroline B. M. Hamblin, Meagan Kaas, Christian S. DiCarlo, James E. Zeng, Guisheng Xu, Xiaoli Revtovich, Alexey V. Kirienko, Natalia V. Wang, Yue Church, George M. Collins, James J. A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans |
title | A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans |
title_full | A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans |
title_fullStr | A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans |
title_full_unstemmed | A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans |
title_short | A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans |
title_sort | crispr cas9-based gene drive platform for genetic interaction analysis in candida albicans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832965/ https://www.ncbi.nlm.nih.gov/pubmed/29062088 http://dx.doi.org/10.1038/s41564-017-0043-0 |
work_keys_str_mv | AT shapirorebeccas acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT chavezalejandro acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT portercarolinebm acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT hamblinmeagan acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT kaaschristians acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT dicarlojamese acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT zengguisheng acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT xuxiaoli acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT revtovichalexeyv acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT kirienkonataliav acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT wangyue acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT churchgeorgem acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT collinsjamesj acrisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT shapirorebeccas crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT chavezalejandro crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT portercarolinebm crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT hamblinmeagan crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT kaaschristians crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT dicarlojamese crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT zengguisheng crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT xuxiaoli crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT revtovichalexeyv crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT kirienkonataliav crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT wangyue crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT churchgeorgem crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans AT collinsjamesj crisprcas9basedgenedriveplatformforgeneticinteractionanalysisincandidaalbicans |