Cargando…

miR‐322‐5p targets IGF‐1 and is suppressed in the heart of rats with pulmonary hypertension

Pulmonary arterial hypertension (PAH) is characterised by remodelling of the pulmonary vasculature leading to right ventricular hypertrophy. Here, we show that miR‐322‐5p (the rodent orthologue of miR‐424‐5p) expression is decreased in the right ventricle of monocrotaline‐treated rats, a model of PA...

Descripción completa

Detalles Bibliográficos
Autores principales: Connolly, Martin, Garfield, Benjamin E., Crosby, Alexi, Morrell, Nick W., Wort, Stephen J., Kemp, Paul R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832985/
https://www.ncbi.nlm.nih.gov/pubmed/29511611
http://dx.doi.org/10.1002/2211-5463.12369
Descripción
Sumario:Pulmonary arterial hypertension (PAH) is characterised by remodelling of the pulmonary vasculature leading to right ventricular hypertrophy. Here, we show that miR‐322‐5p (the rodent orthologue of miR‐424‐5p) expression is decreased in the right ventricle of monocrotaline‐treated rats, a model of PAH, whereas a putative target insulin‐like growth factor 1 (IGF‐1) is increased. IGF‐1 mRNA was enriched 16‐fold in RNA immunoprecipitated with Ago2, indicating binding to miR‐322‐5p. In cell transfection experiments, miR‐322‐5p suppressed the activity of a luciferase reporter containing a section of the IGF‐1 3′ untranslated region (UTR) as well as IGF‐1 mRNA and protein levels. Taken together, these data suggest that miR‐322 targets IGF‐1, a process downregulated in PAH‐related RV hypertrophy.