Cargando…

Metabolic Reprogramming in Amyotrophic Lateral Sclerosis

Mitochondrial dysfunction in the spinal cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the neurometabolic alterations during early stages of the disease remain unknown. Here, we investigated the bioenergetic and proteomic changes in ALS mouse motor neurons and patients’ skin fibrobla...

Descripción completa

Detalles Bibliográficos
Autores principales: Szelechowski, M., Amoedo, N., Obre, E., Léger, C., Allard, L., Bonneu, M., Claverol, S., Lacombe, D., Oliet, S., Chevallier, S., Le Masson, G., Rossignol, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834494/
https://www.ncbi.nlm.nih.gov/pubmed/29500423
http://dx.doi.org/10.1038/s41598-018-22318-5
_version_ 1783303654883721216
author Szelechowski, M.
Amoedo, N.
Obre, E.
Léger, C.
Allard, L.
Bonneu, M.
Claverol, S.
Lacombe, D.
Oliet, S.
Chevallier, S.
Le Masson, G.
Rossignol, R.
author_facet Szelechowski, M.
Amoedo, N.
Obre, E.
Léger, C.
Allard, L.
Bonneu, M.
Claverol, S.
Lacombe, D.
Oliet, S.
Chevallier, S.
Le Masson, G.
Rossignol, R.
author_sort Szelechowski, M.
collection PubMed
description Mitochondrial dysfunction in the spinal cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the neurometabolic alterations during early stages of the disease remain unknown. Here, we investigated the bioenergetic and proteomic changes in ALS mouse motor neurons and patients’ skin fibroblasts. We first observed that SODG93A mice presymptomatic motor neurons display alterations in the coupling efficiency of oxidative phosphorylation, along with fragmentation of the mitochondrial network. The proteome of presymptomatic ALS mice motor neurons also revealed a peculiar metabolic signature with upregulation of most energy-transducing enzymes, including the fatty acid oxidation (FAO) and the ketogenic components HADHA and ACAT2, respectively. Accordingly, FAO inhibition altered cell viability specifically in ALS mice motor neurons, while uncoupling protein 2 (UCP2) inhibition recovered cellular ATP levels and mitochondrial network morphology. These findings suggest a novel hypothesis of ALS bioenergetics linking FAO and UCP2. Lastly, we provide a unique set of data comparing the molecular alterations found in human ALS patients’ skin fibroblasts and SODG93A mouse motor neurons, revealing conserved changes in protein translation, folding and assembly, tRNA aminoacylation and cell adhesion processes.
format Online
Article
Text
id pubmed-5834494
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58344942018-03-05 Metabolic Reprogramming in Amyotrophic Lateral Sclerosis Szelechowski, M. Amoedo, N. Obre, E. Léger, C. Allard, L. Bonneu, M. Claverol, S. Lacombe, D. Oliet, S. Chevallier, S. Le Masson, G. Rossignol, R. Sci Rep Article Mitochondrial dysfunction in the spinal cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the neurometabolic alterations during early stages of the disease remain unknown. Here, we investigated the bioenergetic and proteomic changes in ALS mouse motor neurons and patients’ skin fibroblasts. We first observed that SODG93A mice presymptomatic motor neurons display alterations in the coupling efficiency of oxidative phosphorylation, along with fragmentation of the mitochondrial network. The proteome of presymptomatic ALS mice motor neurons also revealed a peculiar metabolic signature with upregulation of most energy-transducing enzymes, including the fatty acid oxidation (FAO) and the ketogenic components HADHA and ACAT2, respectively. Accordingly, FAO inhibition altered cell viability specifically in ALS mice motor neurons, while uncoupling protein 2 (UCP2) inhibition recovered cellular ATP levels and mitochondrial network morphology. These findings suggest a novel hypothesis of ALS bioenergetics linking FAO and UCP2. Lastly, we provide a unique set of data comparing the molecular alterations found in human ALS patients’ skin fibroblasts and SODG93A mouse motor neurons, revealing conserved changes in protein translation, folding and assembly, tRNA aminoacylation and cell adhesion processes. Nature Publishing Group UK 2018-03-02 /pmc/articles/PMC5834494/ /pubmed/29500423 http://dx.doi.org/10.1038/s41598-018-22318-5 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Szelechowski, M.
Amoedo, N.
Obre, E.
Léger, C.
Allard, L.
Bonneu, M.
Claverol, S.
Lacombe, D.
Oliet, S.
Chevallier, S.
Le Masson, G.
Rossignol, R.
Metabolic Reprogramming in Amyotrophic Lateral Sclerosis
title Metabolic Reprogramming in Amyotrophic Lateral Sclerosis
title_full Metabolic Reprogramming in Amyotrophic Lateral Sclerosis
title_fullStr Metabolic Reprogramming in Amyotrophic Lateral Sclerosis
title_full_unstemmed Metabolic Reprogramming in Amyotrophic Lateral Sclerosis
title_short Metabolic Reprogramming in Amyotrophic Lateral Sclerosis
title_sort metabolic reprogramming in amyotrophic lateral sclerosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834494/
https://www.ncbi.nlm.nih.gov/pubmed/29500423
http://dx.doi.org/10.1038/s41598-018-22318-5
work_keys_str_mv AT szelechowskim metabolicreprogramminginamyotrophiclateralsclerosis
AT amoedon metabolicreprogramminginamyotrophiclateralsclerosis
AT obree metabolicreprogramminginamyotrophiclateralsclerosis
AT legerc metabolicreprogramminginamyotrophiclateralsclerosis
AT allardl metabolicreprogramminginamyotrophiclateralsclerosis
AT bonneum metabolicreprogramminginamyotrophiclateralsclerosis
AT claverols metabolicreprogramminginamyotrophiclateralsclerosis
AT lacombed metabolicreprogramminginamyotrophiclateralsclerosis
AT oliets metabolicreprogramminginamyotrophiclateralsclerosis
AT chevalliers metabolicreprogramminginamyotrophiclateralsclerosis
AT lemassong metabolicreprogramminginamyotrophiclateralsclerosis
AT rossignolr metabolicreprogramminginamyotrophiclateralsclerosis