Cargando…
Short-Term Treatment with Esmolol Reverses Left Ventricular Hypertrophy in Adult Spontaneously Hypertensive Rats via Inhibition of Akt/NF-κB and NFATc4
Our group has previously demonstrated that short-term treatment with esmolol reduces left ventricular hypertrophy (LVH) in spontaneously hypertensive rats (SHRs). The present study aimed to assess the molecular mechanisms related to this effect. Fourteen-month-old male SHR(s) were treated intravenou...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835291/ https://www.ncbi.nlm.nih.gov/pubmed/29670896 http://dx.doi.org/10.1155/2018/2691014 |
Sumario: | Our group has previously demonstrated that short-term treatment with esmolol reduces left ventricular hypertrophy (LVH) in spontaneously hypertensive rats (SHRs). The present study aimed to assess the molecular mechanisms related to this effect. Fourteen-month-old male SHR(s) were treated intravenously with saline as vehicle (SHR) or esmolol (SHR-E) (300 μg/kg/min). Age-matched vehicle-treated male Wistar-Kyoto (WKY) rats served as controls. After 48 hours of treatment, the hearts were harvested and left ventricular tissue was separated and processed for Western blot analysis to determine the levels of Akt, NF-κB, NFATc4, Creb1, Serca2a, Erk1/2, and Sapk/Jnk. Biomarkers of oxidative stress, such as catalase, protein carbonyls, total thiols, and total antioxidant capacity were evaluated. Esmolol reversed the levels of p-NFATc4, p-Akt, and p-NF-κB in SHRs to the phospholevels of these proteins in WKY rats without modifying p-Erk1/2, p-Sapk/Jnk, p-Creb1, or Serca2a in SHR. Compared with SHR, esmolol increased catalase activity and reduced protein carbonyls without modifying total thiols or total antioxidant capacity. Short-term treatment with esmolol reverses LVH in aged SHRs by downregulation of Akt/NF-κB and NFATc4 activity. Esmolol treatment also increases catalase activity and reduces oxidative stress in SHRs with LVH. |
---|