Cargando…

GlcNAc-1-P-transferase-tunicamycin complex structure reveals basis for inhibition of N-glycosylation

N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase, GPT) catalyzes the...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoo, Jiho, Mashalidis, Ellene H., Kuk, Alvin C. Y., Yamamoto, Kazuki, Kaeser, Benjamin, Ichikawa, Satoshi, Lee, Seok-Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840018/
https://www.ncbi.nlm.nih.gov/pubmed/29459785
http://dx.doi.org/10.1038/s41594-018-0031-y
Descripción
Sumario:N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase, GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity by inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structural information. Here we present crystal structures of human GPT in complex with tunicamycin. Our structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited for the design of MraY-specific inhibitors as potential antibiotics.