Cargando…
Reconstructing differentiation networks and their regulation from time series single-cell expression data
Generating detailed and accurate organogenesis models using single-cell RNA-seq data remains a major challenge. Current methods have relied primarily on the assumption that descendant cells are similar to their parents in terms of gene expression levels. These assumptions do not always hold for in v...
Autores principales: | Ding, Jun, Aronow, Bruce J., Kaminski, Naftali, Kitzmiller, Joseph, Whitsett, Jeffrey A., Bar-Joseph, Ziv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5848617/ https://www.ncbi.nlm.nih.gov/pubmed/29317474 http://dx.doi.org/10.1101/gr.225979.117 |
Ejemplares similares
-
Using single cell atlas data to reconstruct regulatory networks
por: Song, Qi, et al.
Publicado: (2023) -
Alignment and classification of time series gene expression in clinical studies
por: Lin, Tien-ho, et al.
Publicado: (2008) -
Dynamic Bayesian Networks for Integrating Multi-omics Time Series Microbiome Data
por: Ruiz-Perez, Daniel, et al.
Publicado: (2021) -
GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data
por: Yuan, Ye, et al.
Publicado: (2020) -
Using neural networks for reducing the dimensions of single-cell RNA-Seq data
por: Lin, Chieh, et al.
Publicado: (2017)