Auditory Proprioceptive Integration: Effects of Real-Time Kinematic Auditory Feedback on Knee Proprioception
The purpose of the study was to assess the influence of real-time auditory feedback on knee proprioception. Thirty healthy participants were randomly allocated to control (n = 15), and experimental group I (15). The participants performed an active knee-repositioning task using their dominant leg, w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852112/ https://www.ncbi.nlm.nih.gov/pubmed/29568259 http://dx.doi.org/10.3389/fnins.2018.00142 |
Sumario: | The purpose of the study was to assess the influence of real-time auditory feedback on knee proprioception. Thirty healthy participants were randomly allocated to control (n = 15), and experimental group I (15). The participants performed an active knee-repositioning task using their dominant leg, with/without additional real-time auditory feedback where the frequency was mapped in a convergent manner to two different target angles (40 and 75°). Statistical analysis revealed significant enhancement in knee re-positioning accuracy for the constant and absolute error with real-time auditory feedback, within and across the groups. Besides this convergent condition, we established a second divergent condition. Here, a step-wise transposition of frequency was performed to explore whether a systematic tuning between auditory-proprioceptive repositioning exists. No significant effects were identified in this divergent auditory feedback condition. An additional experimental group II (n = 20) was further included. Here, we investigated the influence of a larger magnitude and directional change of step-wise transposition of the frequency. In a first step, results confirm the findings of experiment I. Moreover, significant effects on knee auditory-proprioception repositioning were evident when divergent auditory feedback was applied. During the step-wise transposition participants showed systematic modulation of knee movements in the opposite direction of transposition. We confirm that knee re-positioning accuracy can be enhanced with concurrent application of real-time auditory feedback and that knee re-positioning can modulated in a goal-directed manner with step-wise transposition of frequency. Clinical implications are discussed with respect to joint position sense in rehabilitation settings. |
---|