Cargando…

Role of DNA Methylation in Type 2 Diabetes Etiology: Using Genotype as a Causal Anchor

Several studies have investigated the relationship between genetic variation and DNA methylation with respect to type 2 diabetes, but it is unknown if DNA methylation is a mediator in the disease pathway or if it is altered in response to disease state. This study uses genotypic information as a cau...

Descripción completa

Detalles Bibliográficos
Autores principales: Elliott, Hannah R., Shihab, Hashem A., Lockett, Gabrielle A., Holloway, John W., McRae, Allan F., Smith, George Davey, Ring, Susan M., Gaunt, Tom R., Relton, Caroline L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860189/
https://www.ncbi.nlm.nih.gov/pubmed/28246294
http://dx.doi.org/10.2337/db16-0874
Descripción
Sumario:Several studies have investigated the relationship between genetic variation and DNA methylation with respect to type 2 diabetes, but it is unknown if DNA methylation is a mediator in the disease pathway or if it is altered in response to disease state. This study uses genotypic information as a causal anchor to help decipher the likely role of DNA methylation measured in peripheral blood in the etiology of type 2 diabetes. Illumina HumanMethylation450 BeadChip data were generated on 1,018 young individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. In stage 1, 118 unique associations between published type 2 diabetes single nucleotide polymorphisms (SNPs) and genome-wide methylation (methylation quantitative trait loci [mQTLs]) were identified. In stage 2, a further 226 mQTLs were identified between 202 additional independent non–type 2 diabetes SNPs and CpGs identified in stage 1. Where possible, associations were replicated in independent cohorts of similar age. We discovered that around half of known type 2 diabetes SNPs are associated with variation in DNA methylation and postulated that methylation could either be on a causal pathway to future disease or could be a noncausal biomarker. For one locus (KCNQ1), we were able to provide further evidence that methylation is likely to be on the causal pathway to disease in later life.