Cargando…

AnglerFish: a webserver for defining the geometry of α-helices in membrane proteins

SUMMARY: Integral membrane proteins that form helical pores and bundles constitute major drug targets, and many of their structures have been defined by crystallography and cryo-electron microscopy. The gating of channels and ligand binding of transporters generally involve changes in orientation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Colledge, Matthew, Wallace, B A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860525/
https://www.ncbi.nlm.nih.gov/pubmed/28035031
http://dx.doi.org/10.1093/bioinformatics/btw781
Descripción
Sumario:SUMMARY: Integral membrane proteins that form helical pores and bundles constitute major drug targets, and many of their structures have been defined by crystallography and cryo-electron microscopy. The gating of channels and ligand binding of transporters generally involve changes in orientation of one or more the constituent helices in the structures. At present there is no standard easily accessible means for defining the orientation of a helix in a membrane protein structure. AnglerFish is a web-based tool for parameterising the angles of transmembrane helices based on PDB coordinates, with the helical orientations defined by the angles ‘tilt’ and ‘swing’. AnglerFish is particularly useful for defining changes in structure between different states, including both symmetric and asymmetric transitions, and can be used to quantitate differences between related structures or different subunits within the same structure. AVAILABILITY AND IMPLEMENTATION: AnglerFish is freely available at http://anglerfish.cryst.bbk.ac.uk. The website is implemented in Perl-cgi and Apache and operation in all major browsers is supported. The source code is available at GitHub. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.