Cargando…

Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples

Exact data of an electric circuit (EC) model of RLC (resistor, inductor, capacitor) elements representing rational immittance of LTI (linear, time invariant) systems are numerically Fourier transformed to demonstrate within error bounds applicability of the Hilbert integral tranform (HT) and Kramers...

Descripción completa

Detalles Bibliográficos
Autores principales: Malkow, T., Papakonstantinou, G., Pilenga, A., Grahl‐Madsen, L., Tsotridis, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861679/
https://www.ncbi.nlm.nih.gov/pubmed/29577006
http://dx.doi.org/10.1002/celc.201700629
_version_ 1783308136780660736
author Malkow, T.
Papakonstantinou, G.
Pilenga, A.
Grahl‐Madsen, L.
Tsotridis, G.
author_facet Malkow, T.
Papakonstantinou, G.
Pilenga, A.
Grahl‐Madsen, L.
Tsotridis, G.
author_sort Malkow, T.
collection PubMed
description Exact data of an electric circuit (EC) model of RLC (resistor, inductor, capacitor) elements representing rational immittance of LTI (linear, time invariant) systems are numerically Fourier transformed to demonstrate within error bounds applicability of the Hilbert integral tranform (HT) and Kramers‐Kronig (KK) integral tranform (KKT) method. Immittance spectroscopy (IS) data are validated for their HT (KKT) compliance using non‐equispaced fast Fourier transformation (NFFT) computations. Failing of HT (KKT) testing may not only stem from non‐compliance with causality, stability and linearity which are readily distinguished using anti HT (KKT) relations. It could also indicate violation of uniform boundedness to be overcome either by using singly or multiply subtracted KK transform (SSKK or MSKK) or by seeking KKT of the same set of data at a complementary immit‐ tance level. Experimental IS data of a fuel cell (FC) are also numerically HT (KKT) validated by NFFT assessing whether LTI principles are met. Figures of merit are suggested to measure success in numerical validation of IS data.
format Online
Article
Text
id pubmed-5861679
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-58616792018-03-23 Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples Malkow, T. Papakonstantinou, G. Pilenga, A. Grahl‐Madsen, L. Tsotridis, G. ChemElectroChem Communications Exact data of an electric circuit (EC) model of RLC (resistor, inductor, capacitor) elements representing rational immittance of LTI (linear, time invariant) systems are numerically Fourier transformed to demonstrate within error bounds applicability of the Hilbert integral tranform (HT) and Kramers‐Kronig (KK) integral tranform (KKT) method. Immittance spectroscopy (IS) data are validated for their HT (KKT) compliance using non‐equispaced fast Fourier transformation (NFFT) computations. Failing of HT (KKT) testing may not only stem from non‐compliance with causality, stability and linearity which are readily distinguished using anti HT (KKT) relations. It could also indicate violation of uniform boundedness to be overcome either by using singly or multiply subtracted KK transform (SSKK or MSKK) or by seeking KKT of the same set of data at a complementary immit‐ tance level. Experimental IS data of a fuel cell (FC) are also numerically HT (KKT) validated by NFFT assessing whether LTI principles are met. Figures of merit are suggested to measure success in numerical validation of IS data. John Wiley and Sons Inc. 2017-09-27 2017-11 /pmc/articles/PMC5861679/ /pubmed/29577006 http://dx.doi.org/10.1002/celc.201700629 Text en © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Communications
Malkow, T.
Papakonstantinou, G.
Pilenga, A.
Grahl‐Madsen, L.
Tsotridis, G.
Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples
title Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples
title_full Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples
title_fullStr Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples
title_full_unstemmed Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples
title_short Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples
title_sort immittance data validation using fast fourier transformation (fft) computation – synthetic and experimental examples
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861679/
https://www.ncbi.nlm.nih.gov/pubmed/29577006
http://dx.doi.org/10.1002/celc.201700629
work_keys_str_mv AT malkowt immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples
AT papakonstantinoug immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples
AT pilengaa immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples
AT grahlmadsenl immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples
AT tsotridisg immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples