Cargando…
Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples
Exact data of an electric circuit (EC) model of RLC (resistor, inductor, capacitor) elements representing rational immittance of LTI (linear, time invariant) systems are numerically Fourier transformed to demonstrate within error bounds applicability of the Hilbert integral tranform (HT) and Kramers...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861679/ https://www.ncbi.nlm.nih.gov/pubmed/29577006 http://dx.doi.org/10.1002/celc.201700629 |
_version_ | 1783308136780660736 |
---|---|
author | Malkow, T. Papakonstantinou, G. Pilenga, A. Grahl‐Madsen, L. Tsotridis, G. |
author_facet | Malkow, T. Papakonstantinou, G. Pilenga, A. Grahl‐Madsen, L. Tsotridis, G. |
author_sort | Malkow, T. |
collection | PubMed |
description | Exact data of an electric circuit (EC) model of RLC (resistor, inductor, capacitor) elements representing rational immittance of LTI (linear, time invariant) systems are numerically Fourier transformed to demonstrate within error bounds applicability of the Hilbert integral tranform (HT) and Kramers‐Kronig (KK) integral tranform (KKT) method. Immittance spectroscopy (IS) data are validated for their HT (KKT) compliance using non‐equispaced fast Fourier transformation (NFFT) computations. Failing of HT (KKT) testing may not only stem from non‐compliance with causality, stability and linearity which are readily distinguished using anti HT (KKT) relations. It could also indicate violation of uniform boundedness to be overcome either by using singly or multiply subtracted KK transform (SSKK or MSKK) or by seeking KKT of the same set of data at a complementary immit‐ tance level. Experimental IS data of a fuel cell (FC) are also numerically HT (KKT) validated by NFFT assessing whether LTI principles are met. Figures of merit are suggested to measure success in numerical validation of IS data. |
format | Online Article Text |
id | pubmed-5861679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58616792018-03-23 Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples Malkow, T. Papakonstantinou, G. Pilenga, A. Grahl‐Madsen, L. Tsotridis, G. ChemElectroChem Communications Exact data of an electric circuit (EC) model of RLC (resistor, inductor, capacitor) elements representing rational immittance of LTI (linear, time invariant) systems are numerically Fourier transformed to demonstrate within error bounds applicability of the Hilbert integral tranform (HT) and Kramers‐Kronig (KK) integral tranform (KKT) method. Immittance spectroscopy (IS) data are validated for their HT (KKT) compliance using non‐equispaced fast Fourier transformation (NFFT) computations. Failing of HT (KKT) testing may not only stem from non‐compliance with causality, stability and linearity which are readily distinguished using anti HT (KKT) relations. It could also indicate violation of uniform boundedness to be overcome either by using singly or multiply subtracted KK transform (SSKK or MSKK) or by seeking KKT of the same set of data at a complementary immit‐ tance level. Experimental IS data of a fuel cell (FC) are also numerically HT (KKT) validated by NFFT assessing whether LTI principles are met. Figures of merit are suggested to measure success in numerical validation of IS data. John Wiley and Sons Inc. 2017-09-27 2017-11 /pmc/articles/PMC5861679/ /pubmed/29577006 http://dx.doi.org/10.1002/celc.201700629 Text en © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Communications Malkow, T. Papakonstantinou, G. Pilenga, A. Grahl‐Madsen, L. Tsotridis, G. Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples |
title | Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples |
title_full | Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples |
title_fullStr | Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples |
title_full_unstemmed | Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples |
title_short | Immittance Data Validation using Fast Fourier Transformation (FFT) Computation – Synthetic and Experimental Examples |
title_sort | immittance data validation using fast fourier transformation (fft) computation – synthetic and experimental examples |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861679/ https://www.ncbi.nlm.nih.gov/pubmed/29577006 http://dx.doi.org/10.1002/celc.201700629 |
work_keys_str_mv | AT malkowt immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples AT papakonstantinoug immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples AT pilengaa immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples AT grahlmadsenl immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples AT tsotridisg immittancedatavalidationusingfastfouriertransformationfftcomputationsyntheticandexperimentalexamples |