Cargando…
CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) regulate expression of the human fructose-1,6-bisphosphatase 1 (FBP1) gene in human hepatocellular carcinoma HepG2 cells
Fructose-1,6-bisphosphatase (FBP1) plays an essential role in gluconeogenesis. Here we report that the human FBP1 gene is regulated by two liver-enriched transcription factors, CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) in human hepatoma HepG2 cells. C/EBPα re...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863999/ https://www.ncbi.nlm.nih.gov/pubmed/29566023 http://dx.doi.org/10.1371/journal.pone.0194252 |
Sumario: | Fructose-1,6-bisphosphatase (FBP1) plays an essential role in gluconeogenesis. Here we report that the human FBP1 gene is regulated by two liver-enriched transcription factors, CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) in human hepatoma HepG2 cells. C/EBPα regulates transcription of FBP1 gene via binding to the two overlapping C/EBPα sites located at nucleotide -228/-208 while HNF4α regulates FBP1 gene through binding to the classical H4-SBM site and direct repeat 3 (DR3) located at nucleotides -566/-554 and -212/-198, respectively. Mutations of these transcription factor binding sites result in marked decrease of C/EBPα- or HNF4α-mediated transcription activation of FBP1 promoter-luciferase reporter expression. Electrophoretic mobility shift assays of -228/-208 C/EBPα or -566/-554 and -212/-198 HNF4α sites with nuclear extract of HepG2 cells overexpressing C/EBPα or HNF4α confirms binding of these two transcription factors to these sites. Finally, we showed that siRNA-mediated suppression of C/EBPα or HNF4α expression in HepG2 cells lowers expression of FBP1 in parallel with down-regulation of expression of other gluconeogenic enzymes. Our results suggest that an overall gluconeogenic program is regulated by these two transcription factors, enabling transcription to occur in a liver-specific manner. |
---|