Cargando…
BEARscc determines robustness of single-cell clusters using simulated technical replicates
Single-cell messenger RNA sequencing (scRNA-seq) has emerged as a powerful tool to study cellular heterogeneity within complex tissues. Subpopulations of cells with common gene expression profiles can be identified by applying unsupervised clustering algorithms. However, technical variance is a majo...
Autores principales: | Severson, D. T., Owen, R. P., White, M. J., Lu, X., Schuster-Böckler, B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864873/ https://www.ncbi.nlm.nih.gov/pubmed/29567991 http://dx.doi.org/10.1038/s41467-018-03608-y |
Ejemplares similares
-
Mutational signature distribution varies with DNA replication timing and strand asymmetry
por: Tomkova, Marketa, et al.
Publicado: (2018) -
Single cell RNA-seq reveals profound transcriptional similarity between Barrett’s oesophagus and oesophageal submucosal glands
por: Owen, Richard Peter, et al.
Publicado: (2018) -
Performance comparisons between clustering models for reconstructing NGS results from technical replicates
por: Zhai, Yue, et al.
Publicado: (2023) -
Selecting single cell clustering parameter values using subsampling-based robustness metrics
por: Patterson-Cross, Ryan B., et al.
Publicado: (2021) -
Bias-corrected and doubly robust inference for the three-level longitudinal cluster-randomized trials with missing continuous outcomes and small number of clusters: Simulation study and application to a study for adults with serious mental illnesses
por: Kang, Chaeryon, et al.
Publicado: (2023)