Cargando…

Enhancing doping contrast and optimising quantification in the scanning electron microscope by surface treatment and Fermi level pinning

Recent advances in two-dimensional dopant profiling in the scanning electron microscope have enabled a high throughput, non-contact process diagnostics and failure analysis solution for integrated device manufacturing. The routine (electro)chemical etch processes to obtain contamination-free, hydrog...

Descripción completa

Detalles Bibliográficos
Autor principal: Chee, Augustus K. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869679/
https://www.ncbi.nlm.nih.gov/pubmed/29588446
http://dx.doi.org/10.1038/s41598-018-22909-2
Descripción
Sumario:Recent advances in two-dimensional dopant profiling in the scanning electron microscope have enabled a high throughput, non-contact process diagnostics and failure analysis solution for integrated device manufacturing. The routine (electro)chemical etch processes to obtain contamination-free, hydrogen-terminated silicon surfaces is industrially important in ULSI microfabrication, though doping contrast, which is the basis for quantitative dopant profiling, will be strongly altered. We show herein that ammonium-fluoride treatment not only enabled doping contrast to be differentiated mainly by surface band-bending, but it enhanced the quality of linear quantitative calibration through simple univariate analysis for SE energies as low as 1 eV. Energy-filtering measurements reveal that the linear analytical model broached in the literature (c.f. Kazemian et al., 2006 and Kazemian et al., 2007) is likely to be inadequate to determine the surface potential across semiconductor p-n junctions without suitable deconvolution methods. Nevertheless, quantification trends suggest that energy-filtering may not be crucial if patch fields and contamination are absolutely suppressed by the appropriate edge termination and passivation.