Cargando…
Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity
Recent developments have prompted the transition of empirically based testing of late stage toxicity in animals for a range of different endpoints including neurotoxicity to more efficient and predictive mechanistically based approaches with greater emphasis on measurable key events early in the pro...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869951/ https://www.ncbi.nlm.nih.gov/pubmed/28529068 http://dx.doi.org/10.1016/j.pharmthera.2017.05.006 |
_version_ | 1783309376184909824 |
---|---|
author | Bal-Price, Anna Meek, M.E. (Bette) |
author_facet | Bal-Price, Anna Meek, M.E. (Bette) |
author_sort | Bal-Price, Anna |
collection | PubMed |
description | Recent developments have prompted the transition of empirically based testing of late stage toxicity in animals for a range of different endpoints including neurotoxicity to more efficient and predictive mechanistically based approaches with greater emphasis on measurable key events early in the progression of disease. The adverse outcome pathway (AOP) has been proposed as a simplified organizational construct to contribute to this transition by linking molecular initiating events and earlier (more predictive) key events at lower levels of biological organization to disease outcomes. As such, AOPs are anticipated to facilitate the compilation of information to increase mechanistic understanding of pathophysiological pathways that are responsible for human disease. In this review, the sequence of key events resulting in adverse outcome (AO) defined as parkinsonian motor impairment and learning and memory deficit in children, triggered by exposure to environmental chemicals has been briefly described using the AOP framework. These AOPs follow convention adopted in an Organization for Economic Cooperation and Development (OECD) AOP development program, publically available, to permit tailored application of AOPs for a range of different purposes. Due to the complexity of disease pathways, including neurodegenerative disorders, a specific symptom of the disease (e.g. parkinsonian motor deficit) is considered as the AO in a developed AOP. Though the description is necessarily limited by the extent of current knowledge, additional characterization of involved pathways through description of related AOPs interlinked into networks for the same disease has potential to contribute to more holistic and mechanistic understanding of the pathophysiological pathways involved, possibly leading to the mechanism-based reclassification of diseases, thus facilitating more personalized treatment. |
format | Online Article Text |
id | pubmed-5869951 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Pergamon Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58699512018-03-28 Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity Bal-Price, Anna Meek, M.E. (Bette) Pharmacol Ther Article Recent developments have prompted the transition of empirically based testing of late stage toxicity in animals for a range of different endpoints including neurotoxicity to more efficient and predictive mechanistically based approaches with greater emphasis on measurable key events early in the progression of disease. The adverse outcome pathway (AOP) has been proposed as a simplified organizational construct to contribute to this transition by linking molecular initiating events and earlier (more predictive) key events at lower levels of biological organization to disease outcomes. As such, AOPs are anticipated to facilitate the compilation of information to increase mechanistic understanding of pathophysiological pathways that are responsible for human disease. In this review, the sequence of key events resulting in adverse outcome (AO) defined as parkinsonian motor impairment and learning and memory deficit in children, triggered by exposure to environmental chemicals has been briefly described using the AOP framework. These AOPs follow convention adopted in an Organization for Economic Cooperation and Development (OECD) AOP development program, publically available, to permit tailored application of AOPs for a range of different purposes. Due to the complexity of disease pathways, including neurodegenerative disorders, a specific symptom of the disease (e.g. parkinsonian motor deficit) is considered as the AO in a developed AOP. Though the description is necessarily limited by the extent of current knowledge, additional characterization of involved pathways through description of related AOPs interlinked into networks for the same disease has potential to contribute to more holistic and mechanistic understanding of the pathophysiological pathways involved, possibly leading to the mechanism-based reclassification of diseases, thus facilitating more personalized treatment. Pergamon Press 2017-11 /pmc/articles/PMC5869951/ /pubmed/28529068 http://dx.doi.org/10.1016/j.pharmthera.2017.05.006 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bal-Price, Anna Meek, M.E. (Bette) Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity |
title | Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity |
title_full | Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity |
title_fullStr | Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity |
title_full_unstemmed | Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity |
title_short | Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity |
title_sort | adverse outcome pathways: application to enhance mechanistic understanding of neurotoxicity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869951/ https://www.ncbi.nlm.nih.gov/pubmed/28529068 http://dx.doi.org/10.1016/j.pharmthera.2017.05.006 |
work_keys_str_mv | AT balpriceanna adverseoutcomepathwaysapplicationtoenhancemechanisticunderstandingofneurotoxicity AT meekmebette adverseoutcomepathwaysapplicationtoenhancemechanisticunderstandingofneurotoxicity |