Improved data-driven likelihood factorizations for transcript abundance estimation

MOTIVATION: Many methods for transcript-level abundance estimation reduce the computational burden associated with the iterative algorithms they use by adopting an approximate factorization of the likelihood function they optimize. This leads to considerably faster convergence of the optimization pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zakeri, Mohsen, Srivastava, Avi, Almodaresi, Fatemeh, Patro, Rob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870700/
https://www.ncbi.nlm.nih.gov/pubmed/28881996
http://dx.doi.org/10.1093/bioinformatics/btx262