Cargando…
Improved data-driven likelihood factorizations for transcript abundance estimation
MOTIVATION: Many methods for transcript-level abundance estimation reduce the computational burden associated with the iterative algorithms they use by adopting an approximate factorization of the likelihood function they optimize. This leads to considerably faster convergence of the optimization pr...
Autores principales: | Zakeri, Mohsen, Srivastava, Avi, Almodaresi, Fatemeh, Patro, Rob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870700/ https://www.ncbi.nlm.nih.gov/pubmed/28881996 http://dx.doi.org/10.1093/bioinformatics/btx262 |
Ejemplares similares
-
deBGR: an efficient and near-exact representation of the weighted de Bruijn graph
por: Pandey, Prashant, et al.
Publicado: (2017) -
When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants
por: Pagel, Kymberleigh A, et al.
Publicado: (2017) -
Association testing of bisulfite-sequencing methylation data via a Laplace approximation
por: Weissbrod, Omer, et al.
Publicado: (2017) -
Direct AUC optimization of regulatory motifs
por: Zhu, Lin, et al.
Publicado: (2017) -
CATS (Coordinates of Atoms by Taylor Series): protein design with backbone flexibility in all locally feasible directions
por: Hallen, Mark A, et al.
Publicado: (2017)