Cargando…
Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model
Understanding the control of epigenetic regulation is key to explain and modify the aging process. Because histone-modifying enzymes are sensitive to shifts in availability of cofactors (e.g. metabolites), cellular epigenetic states may be tied to changing conditions associated with cofactor variabi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871006/ https://www.ncbi.nlm.nih.gov/pubmed/29543808 http://dx.doi.org/10.1371/journal.pcbi.1006052 |
_version_ | 1783309583452733440 |
---|---|
author | Folguera-Blasco, Núria Cuyàs, Elisabet Menéndez, Javier A. Alarcón, Tomás |
author_facet | Folguera-Blasco, Núria Cuyàs, Elisabet Menéndez, Javier A. Alarcón, Tomás |
author_sort | Folguera-Blasco, Núria |
collection | PubMed |
description | Understanding the control of epigenetic regulation is key to explain and modify the aging process. Because histone-modifying enzymes are sensitive to shifts in availability of cofactors (e.g. metabolites), cellular epigenetic states may be tied to changing conditions associated with cofactor variability. The aim of this study is to analyse the relationships between cofactor fluctuations, epigenetic landscapes, and cell state transitions. Using Approximate Bayesian Computation, we generate an ensemble of epigenetic regulation (ER) systems whose heterogeneity reflects variability in cofactor pools used by histone modifiers. The heterogeneity of epigenetic metabolites, which operates as regulator of the kinetic parameters promoting/preventing histone modifications, stochastically drives phenotypic variability. The ensemble of ER configurations reveals the occurrence of distinct epi-states within the ensemble. Whereas resilient states maintain large epigenetic barriers refractory to reprogramming cellular identity, plastic states lower these barriers, and increase the sensitivity to reprogramming. Moreover, fine-tuning of cofactor levels redirects plastic epigenetic states to re-enter epigenetic resilience, and vice versa. Our ensemble model agrees with a model of metabolism-responsive loss of epigenetic resilience as a cellular aging mechanism. Our findings support the notion that cellular aging, and its reversal, might result from stochastic translation of metabolic inputs into resilient/plastic cell states via ER systems. |
format | Online Article Text |
id | pubmed-5871006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58710062018-04-06 Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model Folguera-Blasco, Núria Cuyàs, Elisabet Menéndez, Javier A. Alarcón, Tomás PLoS Comput Biol Research Article Understanding the control of epigenetic regulation is key to explain and modify the aging process. Because histone-modifying enzymes are sensitive to shifts in availability of cofactors (e.g. metabolites), cellular epigenetic states may be tied to changing conditions associated with cofactor variability. The aim of this study is to analyse the relationships between cofactor fluctuations, epigenetic landscapes, and cell state transitions. Using Approximate Bayesian Computation, we generate an ensemble of epigenetic regulation (ER) systems whose heterogeneity reflects variability in cofactor pools used by histone modifiers. The heterogeneity of epigenetic metabolites, which operates as regulator of the kinetic parameters promoting/preventing histone modifications, stochastically drives phenotypic variability. The ensemble of ER configurations reveals the occurrence of distinct epi-states within the ensemble. Whereas resilient states maintain large epigenetic barriers refractory to reprogramming cellular identity, plastic states lower these barriers, and increase the sensitivity to reprogramming. Moreover, fine-tuning of cofactor levels redirects plastic epigenetic states to re-enter epigenetic resilience, and vice versa. Our ensemble model agrees with a model of metabolism-responsive loss of epigenetic resilience as a cellular aging mechanism. Our findings support the notion that cellular aging, and its reversal, might result from stochastic translation of metabolic inputs into resilient/plastic cell states via ER systems. Public Library of Science 2018-03-15 /pmc/articles/PMC5871006/ /pubmed/29543808 http://dx.doi.org/10.1371/journal.pcbi.1006052 Text en © 2018 Folguera-Blasco et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Folguera-Blasco, Núria Cuyàs, Elisabet Menéndez, Javier A. Alarcón, Tomás Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model |
title | Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model |
title_full | Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model |
title_fullStr | Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model |
title_full_unstemmed | Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model |
title_short | Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model |
title_sort | epigenetic regulation of cell fate reprogramming in aging and disease: a predictive computational model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871006/ https://www.ncbi.nlm.nih.gov/pubmed/29543808 http://dx.doi.org/10.1371/journal.pcbi.1006052 |
work_keys_str_mv | AT folguerablasconuria epigeneticregulationofcellfatereprogramminginaginganddiseaseapredictivecomputationalmodel AT cuyaselisabet epigeneticregulationofcellfatereprogramminginaginganddiseaseapredictivecomputationalmodel AT menendezjaviera epigeneticregulationofcellfatereprogramminginaginganddiseaseapredictivecomputationalmodel AT alarcontomas epigeneticregulationofcellfatereprogramminginaginganddiseaseapredictivecomputationalmodel |