Cargando…

Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury

CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix depo...

Descripción completa

Detalles Bibliográficos
Autores principales: Dias, David Oliveira, Kim, Hoseok, Holl, Daniel, Werne Solnestam, Beata, Lundeberg, Joakim, Carlén, Marie, Göritz, Christian, Frisén, Jonas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871719/
https://www.ncbi.nlm.nih.gov/pubmed/29502968
http://dx.doi.org/10.1016/j.cell.2018.02.004
Descripción
Sumario:CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury.