Cargando…
The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation
BACKGROUND: The restriction factor SAMHD1 regulates intracellular nucleotide level by degrading dNTPs and blocks the replication of retroviruses and DNA viruses in non-cycling cells, like macrophages or dendritic cells. In patients, inactivating mutations in samhd1 are associated with the autoimmune...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872582/ https://www.ncbi.nlm.nih.gov/pubmed/29610582 http://dx.doi.org/10.1186/s13100-018-0116-5 |
_version_ | 1783309866504290304 |
---|---|
author | Herrmann, Alexandra Wittmann, Sabine Thomas, Dominique Shepard, Caitlin N. Kim, Baek Ferreirós, Nerea Gramberg, Thomas |
author_facet | Herrmann, Alexandra Wittmann, Sabine Thomas, Dominique Shepard, Caitlin N. Kim, Baek Ferreirós, Nerea Gramberg, Thomas |
author_sort | Herrmann, Alexandra |
collection | PubMed |
description | BACKGROUND: The restriction factor SAMHD1 regulates intracellular nucleotide level by degrading dNTPs and blocks the replication of retroviruses and DNA viruses in non-cycling cells, like macrophages or dendritic cells. In patients, inactivating mutations in samhd1 are associated with the autoimmune disease Aicardi-Goutières Syndrome (AGS). The accumulation of intracellular nucleic acids derived from endogenous retroelements thriving in the absence of SAMHD1 has been discussed as potential trigger of the autoimmune reaction. In vitro, SAMHD1 has been found to restrict endogenous retroelements, like LINE-1 elements (L1). The mechanism, however, by which SAMHD1 blocks endogenous retroelements, is still unclear. RESULTS: Here, we show that SAMHD1 inhibits the replication of L1 and other endogenous retroelements in cycling cells. By applying GFP- and neomycin-based reporter assays we found that the anti-L1 activity of SAMHD1 is regulated by phosphorylation at threonine 592 (T592). Similar to the block of HIV, the cofactor binding site and the enzymatic active HD domain of SAMHD1 proofed to be essential for restriction of L1 elements. However, phosphorylation at T592 did not correlate with the dNTP hydrolase activity of SAMHD1 in cycling 293T cells suggesting an alternative mechanism of regulation. Interestingly, we found that SAMHD1 binds to ORF2 protein of L1 and that this interaction is regulated by T592 phosphorylation. Together with the finding that the block is also active in cycling cells, our results suggest that the SAMHD1-mediated inhibition of L1 is similar but not identical to HIV restriction. CONCLUSION: Our findings show conclusively that SAMHD1 restricts the replication of endogenous retroelements in vitro. The results suggest that SAMHD1 is important for maintaining genome integrity and support the idea of an enhanced replication of endogenous retroelements in the absence of SAMHD1 in vivo, potentially triggering autoimmune diseases like AGS. Our analysis also contributes to the better understanding of the activities of SAMHD1 in antiviral defense and nucleotide metabolism. The finding that the phosphorylation of SAMHD1 at T592 regulates its activity against retroelements but not necessarily intracellular dNTP level suggests that the dNTP hydrolase activity might not be the only function of SAMHD1 important for its antiviral activity and for controlling autoimmunity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13100-018-0116-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5872582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-58725822018-04-02 The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation Herrmann, Alexandra Wittmann, Sabine Thomas, Dominique Shepard, Caitlin N. Kim, Baek Ferreirós, Nerea Gramberg, Thomas Mob DNA Research BACKGROUND: The restriction factor SAMHD1 regulates intracellular nucleotide level by degrading dNTPs and blocks the replication of retroviruses and DNA viruses in non-cycling cells, like macrophages or dendritic cells. In patients, inactivating mutations in samhd1 are associated with the autoimmune disease Aicardi-Goutières Syndrome (AGS). The accumulation of intracellular nucleic acids derived from endogenous retroelements thriving in the absence of SAMHD1 has been discussed as potential trigger of the autoimmune reaction. In vitro, SAMHD1 has been found to restrict endogenous retroelements, like LINE-1 elements (L1). The mechanism, however, by which SAMHD1 blocks endogenous retroelements, is still unclear. RESULTS: Here, we show that SAMHD1 inhibits the replication of L1 and other endogenous retroelements in cycling cells. By applying GFP- and neomycin-based reporter assays we found that the anti-L1 activity of SAMHD1 is regulated by phosphorylation at threonine 592 (T592). Similar to the block of HIV, the cofactor binding site and the enzymatic active HD domain of SAMHD1 proofed to be essential for restriction of L1 elements. However, phosphorylation at T592 did not correlate with the dNTP hydrolase activity of SAMHD1 in cycling 293T cells suggesting an alternative mechanism of regulation. Interestingly, we found that SAMHD1 binds to ORF2 protein of L1 and that this interaction is regulated by T592 phosphorylation. Together with the finding that the block is also active in cycling cells, our results suggest that the SAMHD1-mediated inhibition of L1 is similar but not identical to HIV restriction. CONCLUSION: Our findings show conclusively that SAMHD1 restricts the replication of endogenous retroelements in vitro. The results suggest that SAMHD1 is important for maintaining genome integrity and support the idea of an enhanced replication of endogenous retroelements in the absence of SAMHD1 in vivo, potentially triggering autoimmune diseases like AGS. Our analysis also contributes to the better understanding of the activities of SAMHD1 in antiviral defense and nucleotide metabolism. The finding that the phosphorylation of SAMHD1 at T592 regulates its activity against retroelements but not necessarily intracellular dNTP level suggests that the dNTP hydrolase activity might not be the only function of SAMHD1 important for its antiviral activity and for controlling autoimmunity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13100-018-0116-5) contains supplementary material, which is available to authorized users. BioMed Central 2018-03-28 /pmc/articles/PMC5872582/ /pubmed/29610582 http://dx.doi.org/10.1186/s13100-018-0116-5 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Herrmann, Alexandra Wittmann, Sabine Thomas, Dominique Shepard, Caitlin N. Kim, Baek Ferreirós, Nerea Gramberg, Thomas The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation |
title | The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation |
title_full | The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation |
title_fullStr | The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation |
title_full_unstemmed | The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation |
title_short | The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation |
title_sort | samhd1-mediated block of line-1 retroelements is regulated by phosphorylation |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872582/ https://www.ncbi.nlm.nih.gov/pubmed/29610582 http://dx.doi.org/10.1186/s13100-018-0116-5 |
work_keys_str_mv | AT herrmannalexandra thesamhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT wittmannsabine thesamhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT thomasdominique thesamhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT shepardcaitlinn thesamhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT kimbaek thesamhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT ferreirosnerea thesamhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT grambergthomas thesamhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT herrmannalexandra samhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT wittmannsabine samhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT thomasdominique samhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT shepardcaitlinn samhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT kimbaek samhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT ferreirosnerea samhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation AT grambergthomas samhd1mediatedblockofline1retroelementsisregulatedbyphosphorylation |