Cargando…
Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP(5+), Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation
Radiation injury to the lung is the result of acute and chronic free radical formation, and there are currently few effective means of mitigating such injury. Studies in rodents indicate that superoxide dismutase mimetics may be effective in this regard; however, studies in humans or large animals a...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874526/ https://www.ncbi.nlm.nih.gov/pubmed/29518913 http://dx.doi.org/10.3390/antiox7030040 |
_version_ | 1783310171445919744 |
---|---|
author | Cline, John Mark Dugan, Greg Bourland, John Daniel Perry, Donna L. Stitzel, Joel D. Weaver, Ashley A. Jiang, Chen Tovmasyan, Artak Owzar, Kouros Spasojevic, Ivan Batinic-Haberle, Ines Vujaskovic, Zeljko |
author_facet | Cline, John Mark Dugan, Greg Bourland, John Daniel Perry, Donna L. Stitzel, Joel D. Weaver, Ashley A. Jiang, Chen Tovmasyan, Artak Owzar, Kouros Spasojevic, Ivan Batinic-Haberle, Ines Vujaskovic, Zeljko |
author_sort | Cline, John Mark |
collection | PubMed |
description | Radiation injury to the lung is the result of acute and chronic free radical formation, and there are currently few effective means of mitigating such injury. Studies in rodents indicate that superoxide dismutase mimetics may be effective in this regard; however, studies in humans or large animals are lacking. We hypothesized that post-exposure treatment with the lipophilic mitochondrial superoxide dismutase mimetic, MnTnHex-2-PyP(5+) (hexyl), would reduce radiation-induced pneumonitis and fibrosis in the lungs of nonhuman primates. Rhesus monkeys (Macaca mulatta) received 10 Gy whole thorax irradiation, 10 Gy + hexyl treatment, sham irradiation, or sham irradiation + hexyl. Hexyl was given twice daily, subcutaneously, at 0.05 mg/kg, for 2 months. Animals were monitored daily, and respiratory rates, pulse oximetry, hematology and serum chemistry panels were performed weekly. Computed tomography scans were performed at 0, 2, and 4 months after irradiation. Supportive fluid therapy, corticosteroids, analgesics, and antibiotics were given as needed. All animals were humanely euthanized 4.5 months after irradiation, and pathologic assessments were made. Multifocal, progressive lung lesions were seen at 2 and 4 months in both irradiated groups. Hexyl treatment delayed the onset of radiation-induced lung lesions, reduced elevations of respiratory rate, and reduced pathologic increases in lung weight. No adverse effects of hexyl treatment were found. These results demonstrate (1) development of a nonhuman primate model of radiation-induced lung injury, (2) a significant mitigating effect of hexyl treatment on lung pathology in this model, and (3) no evidence for toxicity of hexyl at the dose studied. |
format | Online Article Text |
id | pubmed-5874526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-58745262018-04-02 Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP(5+), Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation Cline, John Mark Dugan, Greg Bourland, John Daniel Perry, Donna L. Stitzel, Joel D. Weaver, Ashley A. Jiang, Chen Tovmasyan, Artak Owzar, Kouros Spasojevic, Ivan Batinic-Haberle, Ines Vujaskovic, Zeljko Antioxidants (Basel) Article Radiation injury to the lung is the result of acute and chronic free radical formation, and there are currently few effective means of mitigating such injury. Studies in rodents indicate that superoxide dismutase mimetics may be effective in this regard; however, studies in humans or large animals are lacking. We hypothesized that post-exposure treatment with the lipophilic mitochondrial superoxide dismutase mimetic, MnTnHex-2-PyP(5+) (hexyl), would reduce radiation-induced pneumonitis and fibrosis in the lungs of nonhuman primates. Rhesus monkeys (Macaca mulatta) received 10 Gy whole thorax irradiation, 10 Gy + hexyl treatment, sham irradiation, or sham irradiation + hexyl. Hexyl was given twice daily, subcutaneously, at 0.05 mg/kg, for 2 months. Animals were monitored daily, and respiratory rates, pulse oximetry, hematology and serum chemistry panels were performed weekly. Computed tomography scans were performed at 0, 2, and 4 months after irradiation. Supportive fluid therapy, corticosteroids, analgesics, and antibiotics were given as needed. All animals were humanely euthanized 4.5 months after irradiation, and pathologic assessments were made. Multifocal, progressive lung lesions were seen at 2 and 4 months in both irradiated groups. Hexyl treatment delayed the onset of radiation-induced lung lesions, reduced elevations of respiratory rate, and reduced pathologic increases in lung weight. No adverse effects of hexyl treatment were found. These results demonstrate (1) development of a nonhuman primate model of radiation-induced lung injury, (2) a significant mitigating effect of hexyl treatment on lung pathology in this model, and (3) no evidence for toxicity of hexyl at the dose studied. MDPI 2018-03-07 /pmc/articles/PMC5874526/ /pubmed/29518913 http://dx.doi.org/10.3390/antiox7030040 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cline, John Mark Dugan, Greg Bourland, John Daniel Perry, Donna L. Stitzel, Joel D. Weaver, Ashley A. Jiang, Chen Tovmasyan, Artak Owzar, Kouros Spasojevic, Ivan Batinic-Haberle, Ines Vujaskovic, Zeljko Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP(5+), Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation |
title | Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP(5+), Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation |
title_full | Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP(5+), Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation |
title_fullStr | Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP(5+), Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation |
title_full_unstemmed | Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP(5+), Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation |
title_short | Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP(5+), Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation |
title_sort | post-irradiation treatment with a superoxide dismutase mimic, mntnhex-2-pyp(5+), mitigates radiation injury in the lungs of non-human primates after whole-thorax exposure to ionizing radiation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874526/ https://www.ncbi.nlm.nih.gov/pubmed/29518913 http://dx.doi.org/10.3390/antiox7030040 |
work_keys_str_mv | AT clinejohnmark postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT dugangreg postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT bourlandjohndaniel postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT perrydonnal postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT stitzeljoeld postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT weaverashleya postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT jiangchen postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT tovmasyanartak postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT owzarkouros postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT spasojevicivan postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT batinichaberleines postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation AT vujaskoviczeljko postirradiationtreatmentwithasuperoxidedismutasemimicmntnhex2pyp5mitigatesradiationinjuryinthelungsofnonhumanprimatesafterwholethoraxexposuretoionizingradiation |