Cargando…
A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer
BACKGROUND: Mechanistic models of within-cell signal transduction networks can explain how these networks integrate internal and external inputs to give rise to the appropriate cellular response. These models can be fruitfully used in cancer cells, whose aberrant decision-making regarding their surv...
Autores principales: | Gómez Tejeda Zañudo, Jorge, Scaltriti, Maurizio, Albert, Réka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876695/ https://www.ncbi.nlm.nih.gov/pubmed/29623959 http://dx.doi.org/10.1186/s41236-017-0007-6 |
Ejemplares similares
-
Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks
por: Rozum, Jordan C., et al.
Publicado: (2021) -
ER+ Breast Cancer Strongly Depends on MCL-1 and BCL-xL Anti-Apoptotic Proteins
por: Alcon, Clara, et al.
Publicado: (2021) -
Combinatorial interventions inhibit TGFβ-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes
por: Steinway, Steven Nathaniel, et al.
Publicado: (2015) -
Target Control in Logical Models Using the Domain of Influence of Nodes
por: Yang, Gang, et al.
Publicado: (2018) -
Cell Fate Reprogramming by Control of Intracellular Network Dynamics
por: Zañudo, Jorge G. T., et al.
Publicado: (2015)