Cargando…
CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment
Phenytoin (PHT) is an antiepileptic drug widely used in the treatment of focal epilepsy and status epilepticus, and effective in controlling focal seizures with and without tonic–clonic generalization and status epilepticus. The metabolization of PHT is carried out by two oxidative cytochrome P450 e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880189/ https://www.ncbi.nlm.nih.gov/pubmed/29636628 http://dx.doi.org/10.2147/PGPM.S108113 |
_version_ | 1783311121619353600 |
---|---|
author | Silvado, Carlos Eduardo Terra, Vera Cristina Twardowschy, Carlos Alexandre |
author_facet | Silvado, Carlos Eduardo Terra, Vera Cristina Twardowschy, Carlos Alexandre |
author_sort | Silvado, Carlos Eduardo |
collection | PubMed |
description | Phenytoin (PHT) is an antiepileptic drug widely used in the treatment of focal epilepsy and status epilepticus, and effective in controlling focal seizures with and without tonic–clonic generalization and status epilepticus. The metabolization of PHT is carried out by two oxidative cytochrome P450 enzymes CYP2C9 and CYP2C19; 90% of this metabolization is done by CYP2C9 and the remaining 10% by CYP2C19. Genetic polymorphism of CYP2C9 may reduce the metabolism of PHT by 25–50% in patients with variants *2 and *3 compared to those with wild-type variant *1. The frequency distribution of CYP2C9 polymorphism alleles in patients with epilepsy around the world ranges from 4.5 to 13.6%, being less frequent in African-Americans and Asians. PHT has a narrow therapeutic range and a nonlinear pharmacokinetic profile; hence, its poor metabolization has significant clinical implications as it causes more frequent and more serious adverse effects requiring discontinuation of treatment, even if it had been effective. There is evidence that polymorphisms of CYP2C9 and the use of PHT are associated with an increase in the frequency of some side effects, such as cerebellar atrophy, gingival hypertrophy or acute cutaneous reactions. The presence of HLA-B*15:02 and CYP2C9 *2 or *3 in the same patient increases the risk of Stevens–Johnson syndrome and toxic epidermal necrolysis; hence, PHT should not be prescribed in these patients. In patients with CYP2C9 *1/*2 or *1/*3 alleles (intermediate metabolizers), the usual PHT maintenance dose (5–10 mg/kg/day) must be reduced by 25%, and in those with CYP2C9 *2/*2, *2/*3 or *3/*3 alleles (poor metabolizers), the dose must be reduced by 50%. It is controversial whether CYP2C9 genotyping should be done before starting PHT treatment. In this paper, we aim to review the influence of CYP2C9 polymorphism on the metabolization of PHT and the clinical implications of poor metabolization in the treatment of epilepsies. |
format | Online Article Text |
id | pubmed-5880189 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58801892018-04-10 CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment Silvado, Carlos Eduardo Terra, Vera Cristina Twardowschy, Carlos Alexandre Pharmgenomics Pers Med Review Phenytoin (PHT) is an antiepileptic drug widely used in the treatment of focal epilepsy and status epilepticus, and effective in controlling focal seizures with and without tonic–clonic generalization and status epilepticus. The metabolization of PHT is carried out by two oxidative cytochrome P450 enzymes CYP2C9 and CYP2C19; 90% of this metabolization is done by CYP2C9 and the remaining 10% by CYP2C19. Genetic polymorphism of CYP2C9 may reduce the metabolism of PHT by 25–50% in patients with variants *2 and *3 compared to those with wild-type variant *1. The frequency distribution of CYP2C9 polymorphism alleles in patients with epilepsy around the world ranges from 4.5 to 13.6%, being less frequent in African-Americans and Asians. PHT has a narrow therapeutic range and a nonlinear pharmacokinetic profile; hence, its poor metabolization has significant clinical implications as it causes more frequent and more serious adverse effects requiring discontinuation of treatment, even if it had been effective. There is evidence that polymorphisms of CYP2C9 and the use of PHT are associated with an increase in the frequency of some side effects, such as cerebellar atrophy, gingival hypertrophy or acute cutaneous reactions. The presence of HLA-B*15:02 and CYP2C9 *2 or *3 in the same patient increases the risk of Stevens–Johnson syndrome and toxic epidermal necrolysis; hence, PHT should not be prescribed in these patients. In patients with CYP2C9 *1/*2 or *1/*3 alleles (intermediate metabolizers), the usual PHT maintenance dose (5–10 mg/kg/day) must be reduced by 25%, and in those with CYP2C9 *2/*2, *2/*3 or *3/*3 alleles (poor metabolizers), the dose must be reduced by 50%. It is controversial whether CYP2C9 genotyping should be done before starting PHT treatment. In this paper, we aim to review the influence of CYP2C9 polymorphism on the metabolization of PHT and the clinical implications of poor metabolization in the treatment of epilepsies. Dove Medical Press 2018-03-29 /pmc/articles/PMC5880189/ /pubmed/29636628 http://dx.doi.org/10.2147/PGPM.S108113 Text en © 2018 Silvado et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Review Silvado, Carlos Eduardo Terra, Vera Cristina Twardowschy, Carlos Alexandre CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment |
title | CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment |
title_full | CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment |
title_fullStr | CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment |
title_full_unstemmed | CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment |
title_short | CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment |
title_sort | cyp2c9 polymorphisms in epilepsy: influence on phenytoin treatment |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880189/ https://www.ncbi.nlm.nih.gov/pubmed/29636628 http://dx.doi.org/10.2147/PGPM.S108113 |
work_keys_str_mv | AT silvadocarloseduardo cyp2c9polymorphismsinepilepsyinfluenceonphenytointreatment AT terraveracristina cyp2c9polymorphismsinepilepsyinfluenceonphenytointreatment AT twardowschycarlosalexandre cyp2c9polymorphismsinepilepsyinfluenceonphenytointreatment |