Cargando…
Simultaneous Monitoring of Cell-surface Receptor and Tumor-targeted Photodynamic Therapy via TdT-initiated Poly-G-Quadruplexes
Cancer cells contain a unique set of cell surface receptors that provide potential targets for tumor theranostics. Here, we propose an efficient approach to construct G-quadruplex-based aptamers that specifically recognize cell-surface receptors and monitor them in an amplified manner. This designed...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882647/ https://www.ncbi.nlm.nih.gov/pubmed/29615769 http://dx.doi.org/10.1038/s41598-018-23902-5 |
Sumario: | Cancer cells contain a unique set of cell surface receptors that provide potential targets for tumor theranostics. Here, we propose an efficient approach to construct G-quadruplex-based aptamers that specifically recognize cell-surface receptors and monitor them in an amplified manner. This designed aptamer combined particular sequence for the c-Met on the cell surface and poly-G-quadruplexes structures that allow a rapid and amplified fluorescent readout upon the binding of thioflavin T (ThT). The poly-G-quadruplexes also function as a carrier for photosensitizers such as TMPyP4 in that, the aptamer further trigger the production of reactive oxygen species (ROS) to commit cells to death. This unique c-Met targeting aptamer enabled simultaneous monitoring of c-Met on the cell surface with ThT and photodynamic killing of these lung cancer cells with TMPyP4. This strategy is expected to enhance the development of tumor-targeted diagnosis and drug delivery. |
---|