Cargando…

Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions

We investigated galectin-3 binding to 3-benzamido-2-O-sulfo-galactoside and -thiodigalactoside ligands using a combination of site-specific mutagenesis, X-ray crystallography, computational approaches, and binding thermodynamics measurements. The results reveal a conformational variability in a surf...

Descripción completa

Detalles Bibliográficos
Autores principales: Noresson, A.-L., Aurelius, O., Öberg, C. T., Engström, O., Sundin, A. P., Håkansson, M., Stenström, O., Akke, M., Logan, D. T., Leffler, H., Nilsson, U. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883865/
https://www.ncbi.nlm.nih.gov/pubmed/29675148
http://dx.doi.org/10.1039/c7sc04749e
_version_ 1783311735548018688
author Noresson, A.-L.
Aurelius, O.
Öberg, C. T.
Engström, O.
Sundin, A. P.
Håkansson, M.
Stenström, O.
Akke, M.
Logan, D. T.
Leffler, H.
Nilsson, U. J.
author_facet Noresson, A.-L.
Aurelius, O.
Öberg, C. T.
Engström, O.
Sundin, A. P.
Håkansson, M.
Stenström, O.
Akke, M.
Logan, D. T.
Leffler, H.
Nilsson, U. J.
author_sort Noresson, A.-L.
collection PubMed
description We investigated galectin-3 binding to 3-benzamido-2-O-sulfo-galactoside and -thiodigalactoside ligands using a combination of site-specific mutagenesis, X-ray crystallography, computational approaches, and binding thermodynamics measurements. The results reveal a conformational variability in a surface-exposed arginine (R144) side chain in response to different aromatic C3-substituents of bound galactoside-based ligands. Fluorinated C3-benzamido substituents induced a shift in the side-chain conformation of R144 to allow for an entropically favored electrostatic interaction between its guanidine group and the 2-O-sulfate of the ligand. By contrast, binding of ligands with non-fluorinated substituents did not trigger a conformational change of R144. Hence, a sulfate–arginine electrostatic interaction can be tuned by the choice of ligand C3-benzamido structures to favor specific interaction modes and geometries. These results have important general implications for ligand design, as the proper choice of arginine–aromatic interacting partners opens up for ligand-controlled protein conformation that in turn may be systematically exploited in ligand design.
format Online
Article
Text
id pubmed-5883865
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-58838652018-04-19 Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions Noresson, A.-L. Aurelius, O. Öberg, C. T. Engström, O. Sundin, A. P. Håkansson, M. Stenström, O. Akke, M. Logan, D. T. Leffler, H. Nilsson, U. J. Chem Sci Chemistry We investigated galectin-3 binding to 3-benzamido-2-O-sulfo-galactoside and -thiodigalactoside ligands using a combination of site-specific mutagenesis, X-ray crystallography, computational approaches, and binding thermodynamics measurements. The results reveal a conformational variability in a surface-exposed arginine (R144) side chain in response to different aromatic C3-substituents of bound galactoside-based ligands. Fluorinated C3-benzamido substituents induced a shift in the side-chain conformation of R144 to allow for an entropically favored electrostatic interaction between its guanidine group and the 2-O-sulfate of the ligand. By contrast, binding of ligands with non-fluorinated substituents did not trigger a conformational change of R144. Hence, a sulfate–arginine electrostatic interaction can be tuned by the choice of ligand C3-benzamido structures to favor specific interaction modes and geometries. These results have important general implications for ligand design, as the proper choice of arginine–aromatic interacting partners opens up for ligand-controlled protein conformation that in turn may be systematically exploited in ligand design. Royal Society of Chemistry 2017-12-04 /pmc/articles/PMC5883865/ /pubmed/29675148 http://dx.doi.org/10.1039/c7sc04749e Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Noresson, A.-L.
Aurelius, O.
Öberg, C. T.
Engström, O.
Sundin, A. P.
Håkansson, M.
Stenström, O.
Akke, M.
Logan, D. T.
Leffler, H.
Nilsson, U. J.
Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
title Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
title_full Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
title_fullStr Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
title_full_unstemmed Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
title_short Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
title_sort designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883865/
https://www.ncbi.nlm.nih.gov/pubmed/29675148
http://dx.doi.org/10.1039/c7sc04749e
work_keys_str_mv AT noressonal designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT aureliuso designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT obergct designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT engstromo designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT sundinap designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT hakanssonm designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT stenstromo designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT akkem designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT logandt designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT lefflerh designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions
AT nilssonuj designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions