Cargando…
Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
We investigated galectin-3 binding to 3-benzamido-2-O-sulfo-galactoside and -thiodigalactoside ligands using a combination of site-specific mutagenesis, X-ray crystallography, computational approaches, and binding thermodynamics measurements. The results reveal a conformational variability in a surf...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883865/ https://www.ncbi.nlm.nih.gov/pubmed/29675148 http://dx.doi.org/10.1039/c7sc04749e |
_version_ | 1783311735548018688 |
---|---|
author | Noresson, A.-L. Aurelius, O. Öberg, C. T. Engström, O. Sundin, A. P. Håkansson, M. Stenström, O. Akke, M. Logan, D. T. Leffler, H. Nilsson, U. J. |
author_facet | Noresson, A.-L. Aurelius, O. Öberg, C. T. Engström, O. Sundin, A. P. Håkansson, M. Stenström, O. Akke, M. Logan, D. T. Leffler, H. Nilsson, U. J. |
author_sort | Noresson, A.-L. |
collection | PubMed |
description | We investigated galectin-3 binding to 3-benzamido-2-O-sulfo-galactoside and -thiodigalactoside ligands using a combination of site-specific mutagenesis, X-ray crystallography, computational approaches, and binding thermodynamics measurements. The results reveal a conformational variability in a surface-exposed arginine (R144) side chain in response to different aromatic C3-substituents of bound galactoside-based ligands. Fluorinated C3-benzamido substituents induced a shift in the side-chain conformation of R144 to allow for an entropically favored electrostatic interaction between its guanidine group and the 2-O-sulfate of the ligand. By contrast, binding of ligands with non-fluorinated substituents did not trigger a conformational change of R144. Hence, a sulfate–arginine electrostatic interaction can be tuned by the choice of ligand C3-benzamido structures to favor specific interaction modes and geometries. These results have important general implications for ligand design, as the proper choice of arginine–aromatic interacting partners opens up for ligand-controlled protein conformation that in turn may be systematically exploited in ligand design. |
format | Online Article Text |
id | pubmed-5883865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-58838652018-04-19 Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions Noresson, A.-L. Aurelius, O. Öberg, C. T. Engström, O. Sundin, A. P. Håkansson, M. Stenström, O. Akke, M. Logan, D. T. Leffler, H. Nilsson, U. J. Chem Sci Chemistry We investigated galectin-3 binding to 3-benzamido-2-O-sulfo-galactoside and -thiodigalactoside ligands using a combination of site-specific mutagenesis, X-ray crystallography, computational approaches, and binding thermodynamics measurements. The results reveal a conformational variability in a surface-exposed arginine (R144) side chain in response to different aromatic C3-substituents of bound galactoside-based ligands. Fluorinated C3-benzamido substituents induced a shift in the side-chain conformation of R144 to allow for an entropically favored electrostatic interaction between its guanidine group and the 2-O-sulfate of the ligand. By contrast, binding of ligands with non-fluorinated substituents did not trigger a conformational change of R144. Hence, a sulfate–arginine electrostatic interaction can be tuned by the choice of ligand C3-benzamido structures to favor specific interaction modes and geometries. These results have important general implications for ligand design, as the proper choice of arginine–aromatic interacting partners opens up for ligand-controlled protein conformation that in turn may be systematically exploited in ligand design. Royal Society of Chemistry 2017-12-04 /pmc/articles/PMC5883865/ /pubmed/29675148 http://dx.doi.org/10.1039/c7sc04749e Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Noresson, A.-L. Aurelius, O. Öberg, C. T. Engström, O. Sundin, A. P. Håkansson, M. Stenström, O. Akke, M. Logan, D. T. Leffler, H. Nilsson, U. J. Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions |
title | Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
|
title_full | Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
|
title_fullStr | Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
|
title_full_unstemmed | Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
|
title_short | Designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions
|
title_sort | designing interactions by control of protein–ligand complex conformation: tuning arginine–arene interaction geometry for enhanced electrostatic protein–ligand interactions |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883865/ https://www.ncbi.nlm.nih.gov/pubmed/29675148 http://dx.doi.org/10.1039/c7sc04749e |
work_keys_str_mv | AT noressonal designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT aureliuso designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT obergct designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT engstromo designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT sundinap designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT hakanssonm designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT stenstromo designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT akkem designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT logandt designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT lefflerh designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions AT nilssonuj designinginteractionsbycontrolofproteinligandcomplexconformationtuningarginineareneinteractiongeometryforenhancedelectrostaticproteinligandinteractions |