Cargando…
GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data
Normalization is the first critical step in microbiome sequencing data analysis used to account for variable library sizes. Current RNA-Seq based normalization methods that have been adapted for microbiome data fail to consider the unique characteristics of microbiome data, which contain a vast numb...
Autores principales: | Chen, Li, Reeve, James, Zhang, Lujun, Huang, Shengbing, Wang, Xuefeng, Chen, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885979/ https://www.ncbi.nlm.nih.gov/pubmed/29629248 http://dx.doi.org/10.7717/peerj.4600 |
Ejemplares similares
-
A comparison of zero-inflated and hurdle models for modeling zero-inflated count data
por: Feng, Cindy Xin
Publicado: (2021) -
How to normalize metatranscriptomic count data for differential expression analysis
por: Klingenberg, Heiner, et al.
Publicado: (2017) -
On the equivalence of one‐inflated zero‐truncated and zero‐truncated one‐inflated count data likelihoods
por: Böhning, Dankmar
Publicado: (2022) -
Compositional zero-inflated network estimation for microbiome data
por: Ha, Min Jin, et al.
Publicado: (2020) -
Zero‐inflated count distributions for capture–mark–reencounter data
por: Riecke, Thomas V., et al.
Publicado: (2022)