Cargando…

Total chemical synthesis of glycocin F and analogues: S-glycosylation confers improved antimicrobial activity

Glycocin F (GccF) is a unique diglycosylated bacteriocin peptide that possesses potent and reversible bacteriostatic activity against a range of Gram-positive bacteria. GccF is a rare example of a ‘glycoactive’ bacteriocin, with both the O-linked N-acetylglucosamine (GlcNAc) and the unusual S-linked...

Descripción completa

Detalles Bibliográficos
Autores principales: Amso, Zaid, Bisset, Sean W., Yang, Sung-Hyun, Harris, Paul W. R., Wright, Tom H., Navo, Claudio D., Patchett, Mark L., Norris, Gillian E., Brimble, Margaret A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890784/
https://www.ncbi.nlm.nih.gov/pubmed/29675216
http://dx.doi.org/10.1039/c7sc04383j
Descripción
Sumario:Glycocin F (GccF) is a unique diglycosylated bacteriocin peptide that possesses potent and reversible bacteriostatic activity against a range of Gram-positive bacteria. GccF is a rare example of a ‘glycoactive’ bacteriocin, with both the O-linked N-acetylglucosamine (GlcNAc) and the unusual S-linked GlcNAc moiety important for antibacterial activity. In this report, glycocin F was successfully prepared using a native chemical ligation strategy and folded into its native structure. The chemically synthesised glycocin appeared to be slightly more active than the recombinant material produced from Lactobacillus plantarum. A second-generation synthetic strategy was used to prepare 2 site selective ‘glyco-mutants’ containing either two S-linked or two O-linked GlcNAc moieties; these mutants were used to probe the contribution of each type of glycosidic linkage to bacteriostatic activity. Replacing the S-linked GlcNAc at residue 43 with an O-linked GlcNAc decreased the antibacterial activity, while replacing O-linked GlcNAc at position 18 with an S-linked GlcNAc increased the bioactivity suggesting that the S-glycosidic linkage may offer a biologically-inspired route towards more active bacteriocins.