Cargando…
MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates
BACKGROUND: Marked increases in fluconazole resistance in Candida tropicalis have been recently reported. In this study, the molecular mechanisms behind fluconazole resistance were investigated. METHODS: Twenty-two C. tropicalis clinical isolates, including 12 fluconazole-resistant isolates and 10 f...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891969/ https://www.ncbi.nlm.nih.gov/pubmed/29631565 http://dx.doi.org/10.1186/s12879-018-3082-0 |
Sumario: | BACKGROUND: Marked increases in fluconazole resistance in Candida tropicalis have been recently reported. In this study, the molecular mechanisms behind fluconazole resistance were investigated. METHODS: Twenty-two C. tropicalis clinical isolates, including 12 fluconazole-resistant isolates and 10 fluconazole-susceptible isolates, were collected from a tertiary care teaching hospital in Beijing between 2013 and 2017. Antifungal susceptibility testing, multilocus sequence typing, ERG11 amplification and sequencing, quantitative real-time reverse transcription-polymerase chain reaction (ERG11, UPC2, MDR1, and CDR1), and clinical data collection were performed for all C. tropicalis isolates. RESULTS: Multilocus sequence typing revealed that the 10 fluconazole-susceptible isolates and 12 fluconazole-resistant isolates were divided into nine and seven diploid sequence types, respectively. Of the 12 patients with fluconazole-resistant isolates, six had been previously exposed to azole and four had a fatal outcome. Y132F and S154F amino acid substitutions in Erg11p were found in all fluconazole-resistant isolates except one. MDR1 gene overexpression was identified in fluconazole-resistant isolates. In particular, seven high-level fluconazole resistant isolates (minimum inhibitory concentration ≥ 128 mg/L) and three pan-azole resistant isolates were identified. CDR1, ERG11, and UPC2 gene expression levels in fluconazole-resistant isolates were not significantly different from the control isolates (P = 0.262, P = 0.598, P = 0.114, respectively). CONCLUSIONS: This study provides evidence that the combination of MDR1 gene overexpression and ERG11 missense mutations is responsible for high-level fluconazole resistance and pan-azole resistance in C. tropicalis clinical isolates. To the best of our knowledge, this is the first study investigating the relationship between MDR1 gene overexpression and increased fluconazole resistance. |
---|