Cargando…
Strong impact of natural-selection–free heterogeneity in genetics of age-related phenotypes
A conceptual difficulty in genetics of age-related phenotypes that make individuals vulnerable to disease in post-reproductive life is genetic heterogeneity attributed to an undefined role of evolution in establishing their molecular mechanisms. Here, we performed univariate and pleiotropic genome-w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892700/ https://www.ncbi.nlm.nih.gov/pubmed/29615537 http://dx.doi.org/10.18632/aging.101407 |
Sumario: | A conceptual difficulty in genetics of age-related phenotypes that make individuals vulnerable to disease in post-reproductive life is genetic heterogeneity attributed to an undefined role of evolution in establishing their molecular mechanisms. Here, we performed univariate and pleiotropic genome-wide meta-analyses of 20 age-related phenotypes leveraging longitudinal information in a sample of 33,431 individuals and dealing with the natural-selection–free genetic heterogeneity. We identified 142 non-proxy single nucleotide polymorphisms (SNPs) with phenotype-specific (18 SNPs) and pleiotropic (124 SNPs) associations at genome-wide level. Univariate meta-analysis identified two novel (11.1%) and replicated 16 SNPs whereas pleiotropic meta-analysis identified 115 novel (92.7%) and nine replicated SNPs. Pleiotropic associations for most novel (93.9%) and all replicated SNPs were strongly impacted by the natural-selection–free genetic heterogeneity in its unconventional form of antagonistic heterogeneity, implying antagonistic directions of genetic effects for directly correlated phenotypes. Our results show that the common genome-wide approach is well adapted to handle homogeneous univariate associations within Mendelian framework whereas most associations with age-related phenotypes are more complex and well beyond that framework. Dissecting the natural-selection–free genetic heterogeneity is critical for gaining insights into genetics of age-related phenotypes and has substantial and unexplored yet potential for improving efficiency of genome-wide analysis. |
---|