Cargando…

DNA methylation loss in late-replicating domains is linked to mitotic cell division

DNA methylation loss occurs frequently in cancer genomes, primarily within lamina-associated, late-replicating regions termed Partially Methylated Domains (PMDs). We profiled 39 diverse primary tumors and 8 matched adjacent tissues using Whole-Genome Bisulfite Sequencing (WGBS), and analyzed them al...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Wanding, Dinh, Huy Q., Ramjan, Zachary, Weisenberger, Daniel J., Nicolet, Charles M., Shen, Hui, Laird, Peter W., Berman, Benjamin P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893360/
https://www.ncbi.nlm.nih.gov/pubmed/29610480
http://dx.doi.org/10.1038/s41588-018-0073-4
Descripción
Sumario:DNA methylation loss occurs frequently in cancer genomes, primarily within lamina-associated, late-replicating regions termed Partially Methylated Domains (PMDs). We profiled 39 diverse primary tumors and 8 matched adjacent tissues using Whole-Genome Bisulfite Sequencing (WGBS), and analyzed them alongside 343 additional human and 206 mouse WGBS datasets. We identified a local CpG sequence context associated with preferential hypomethylation in PMDs. Analysis of CpGs in this context (“Solo-WCGWs”) revealed previously undetected PMD hypomethylation in almost all healthy tissue types. PMD hypomethylation increased with age, beginning during fetal development, and appeared to track the accumulation of cell divisions. In cancer, PMD hypomethylation depth correlated with somatic mutation density and cell-cycle gene expression, consistent with its reflection of mitotic history, and suggesting its application as a mitotic clock. We propose that late replication leads to lifelong progressive methylation loss, which acts as a biomarker for cellular aging and which may contribute to oncogenesis.