Cargando…

Hidden Structural Modules in a Cooperative RNA Folding Transition

Large-scale, cooperative rearrangements underlie the functions of RNA in RNA-protein machines and gene regulation. To understand how such rearrangements are orchestrated, we used high-throughput chemical footprinting to dissect a seemingly concerted rearrangement in P5abc RNA, a paradigm of RNA fold...

Descripción completa

Detalles Bibliográficos
Autores principales: Gracia, Brant, Al-Hashimi, Hashim M., Bisaria, Namita, Das, Rhiju, Herschlag, Daniel, Russell, Rick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894117/
https://www.ncbi.nlm.nih.gov/pubmed/29562180
http://dx.doi.org/10.1016/j.celrep.2018.02.101
Descripción
Sumario:Large-scale, cooperative rearrangements underlie the functions of RNA in RNA-protein machines and gene regulation. To understand how such rearrangements are orchestrated, we used high-throughput chemical footprinting to dissect a seemingly concerted rearrangement in P5abc RNA, a paradigm of RNA folding studies. With mutations that systematically disrupt or restore putative structural elements, we found that this transition reflects local folding of structural modules, with modest and incremental cooperativity that results in concerted behavior. First, two distant secondary structure changes are coupled through a bridging three-way junction and Mg(2+)-dependent tertiary structure. Second, long-range contacts are formed between modules, resulting in additional cooperativity. Given the sparseness of RNA tertiary contacts after secondary structure formation, we expect that modular folding and incremental cooperativity are generally important for specifying functional structures while also providing productive kinetic paths to these structures. Additionally, we expect our approach to be useful for uncovering modularity in other complex RNAs.