Cargando…

Capsaicin upregulates HDAC2 via TRPV1 and impairs neuronal maturation in mice

Transient receptor potential vanilloid 1 (TRPV1) affects mood and neuroplasticity in the brain, where its role is poorly understood. In the present study we investigated whether capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide), an agonist of TRPV1, induced chromatin remodeling and thereby altered...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Sung Eun, Ko, Seung Yeon, Kim, Yong-Seok, Jo, Sungsin, Lee, Seung Hoon, Jung, Sung Jun, Son, Hyeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898893/
https://www.ncbi.nlm.nih.gov/pubmed/29520110
http://dx.doi.org/10.1038/emm.2017.289
Descripción
Sumario:Transient receptor potential vanilloid 1 (TRPV1) affects mood and neuroplasticity in the brain, where its role is poorly understood. In the present study we investigated whether capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide), an agonist of TRPV1, induced chromatin remodeling and thereby altered gene expression related to synaptic plasticity. We found that capsaicin treatment resulted in upregulation of histone deacetylase 2 (HDAC2) in the mouse hippocampus and HDAC2 was enriched at Psd95, synaptophysin, GLUR1, GLUR2 promoters. Viral-mediated hippocampal knockdown of HDAC2 induced expression of Synapsin I and prevented the detrimental effects of capsaicin on Synapsin I expression in mice, supporting the role of HDAC2 in regulation of capsaicin-induced Synapsin I expression. Taken together, our findings implicate HDAC2 in capsaicin-induced transcriptional regulation of synaptic molecules and support the view that HDAC2 is a molecular link between TRPV1 activity and synaptic plasticity.