Cargando…
Regulation of apoptosis by an intrinsically disordered region of Bcl-xL
Intrinsically disordered regions (IDRs) of proteins often regulate function upon posttranslational modifications (PTMs) through interactions with folded domains. An IDR linking two α-helices (α1–α2) of the anti-apoptotic protein, Bcl-xL, experiences several PTMs, which reduce anti-apoptotic activity...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899648/ https://www.ncbi.nlm.nih.gov/pubmed/29507390 http://dx.doi.org/10.1038/s41589-018-0011-x |
Sumario: | Intrinsically disordered regions (IDRs) of proteins often regulate function upon posttranslational modifications (PTMs) through interactions with folded domains. An IDR linking two α-helices (α1–α2) of the anti-apoptotic protein, Bcl-xL, experiences several PTMs, which reduce anti-apoptotic activity. Here, we report that PTMs within the α1–α2 IDR promote its interaction with the folded core of Bcl-xL that inhibits the pro-apoptotic activity of two types of regulatory targets, BH3-only proteins and p53. This autoregulation utilizes an allosteric pathway where, in one direction, the IDR induces a direct displacement of p53 from Bcl-xL coupled to allosteric displacement of simultaneously bound BH3-only partners. This pathway operates in the opposite direction when the BH3-only protein PUMA binds to the BH3 binding groove of Bcl-xL, directly displacing other bound BH3-only proteins, and allosterically remodeling the distal site, displacing p53. Our findings show how an IDR enhances functional versatility through PTM-dependent, allosteric regulation of a folded protein domain. |
---|