Cargando…

A murine model of atopic dermatitis can be generated by painting the dorsal skin with hapten twice 14 days apart

Drug development involves pharmacometric experiments in animals. Such experiments should limit animal pain and stress. Conventional murine models of atopic dermatitis (AD) used in drug development are generated by weekly painting of hapten on dorsal skin for 5 weeks. The present study aimed to devel...

Descripción completa

Detalles Bibliográficos
Autores principales: Kitamura, Ayaka, Takata, Ryohei, Aizawa, Shin, Watanabe, Hajime, Wada, Tadashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902631/
https://www.ncbi.nlm.nih.gov/pubmed/29662233
http://dx.doi.org/10.1038/s41598-018-24363-6
Descripción
Sumario:Drug development involves pharmacometric experiments in animals. Such experiments should limit animal pain and stress. Conventional murine models of atopic dermatitis (AD) used in drug development are generated by weekly painting of hapten on dorsal skin for 5 weeks. The present study aimed to develop a protocol that involves less animal distress. The experiments focused on serum total IgE levels, which are a marker of AD. The conventional protocol induced ever rising IgE levels. Experiments with extended intervals between sensitizations showed that IgE peaked ~5 days after the second sensitization, after which it returned to the control level within 12–19 days. An additional third sensitization on day 28 further increased the serum IgE level. In the 4–5 days after the second sensitization, the dorsal skin exhibited typical AD-like lesions with edema, scabs, epithelial-cell hypertrophy, marked mast-cell and lymphocyte infiltration of dermis, and increased IL-4, IL-6, IL-10, IL-1β, IL-17A, IFN-γ and TNF-α expression. Thus, two 2,4-dinitrofluorobenzene sensitizations yield a murine AD model in less than 20 days. This study shows that animal model protocols used in drug development can be fine-tuned so that they remain effective yet cause animals less stress and pain.