Cargando…
DeepSF: deep convolutional neural network for mapping protein sequences to folds
MOTIVATION: Protein fold recognition is an important problem in structural bioinformatics. Almost all traditional fold recognition methods use sequence (homology) comparison to indirectly predict the fold of a target protein based on the fold of a template protein with known structure, which cannot...
Autores principales: | Hou, Jie, Adhikari, Badri, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905591/ https://www.ncbi.nlm.nih.gov/pubmed/29228193 http://dx.doi.org/10.1093/bioinformatics/btx780 |
Ejemplares similares
-
DNCON2: improved protein contact prediction using two-level deep convolutional neural networks
por: Adhikari, Badri, et al.
Publicado: (2018) -
Improving Protein Fold Recognition by Deep Learning Networks
por: Jo, Taeho, et al.
Publicado: (2015) -
DeepDist: real-value inter-residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
Deep learning methods for protein torsion angle prediction
por: Li, Haiou, et al.
Publicado: (2017) -
Correction to: DeepDist: real‑value inter‑residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021)