Cargando…
Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants
Exploring the vicinity around a locus of a protein in sequence space may identify homologs with enhanced properties, which could become valuable in biotechnical and other applications. A rational approach to this pursuit is the use of ‘infologs’, i.e. synthetic sequences with specific substitutions...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5914380/ https://www.ncbi.nlm.nih.gov/pubmed/28967959 http://dx.doi.org/10.1093/protein/gzx045 |
_version_ | 1783316702586470400 |
---|---|
author | Musdal, Yaman Govindarajan, Sridhar Mannervik, Bengt |
author_facet | Musdal, Yaman Govindarajan, Sridhar Mannervik, Bengt |
author_sort | Musdal, Yaman |
collection | PubMed |
description | Exploring the vicinity around a locus of a protein in sequence space may identify homologs with enhanced properties, which could become valuable in biotechnical and other applications. A rational approach to this pursuit is the use of ‘infologs’, i.e. synthetic sequences with specific substitutions capturing maximal sequence information derived from the evolutionary history of the protein family. Ninety-five such infolog genes of poplar glutathione transferase were synthesized and expressed in Escherichia coli, and the catalytic activities of the proteins determined with alternative substrates. Sequence–activity relationships derived from the infologs were used to design a second set of 47 infologs in which 90% of the members exceeded wild-type properties. Two mutants, C2 (V55I/E95D/D108E/A160V) and G5 (F13L/C70A/G122E), were further functionally characterized. The activities of the infologs with the alternative substrates 1-chloro-2,4-dinitrobenzene and phenethyl isothiocyanate, subject to different chemistries, were positively correlated, indicating that the examined mutations were affecting the overall catalytic competence without major shift in substrate discrimination. By contrast, the enhanced protein expressivity observed in many of the mutants were not similarly correlated with the activities. In conclusion, small libraries of well-defined infologs can be used to systematically explore sequence space to optimize proteins in multidimensional functional space. |
format | Online Article Text |
id | pubmed-5914380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-59143802018-05-04 Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants Musdal, Yaman Govindarajan, Sridhar Mannervik, Bengt Protein Eng Des Sel Original Article Exploring the vicinity around a locus of a protein in sequence space may identify homologs with enhanced properties, which could become valuable in biotechnical and other applications. A rational approach to this pursuit is the use of ‘infologs’, i.e. synthetic sequences with specific substitutions capturing maximal sequence information derived from the evolutionary history of the protein family. Ninety-five such infolog genes of poplar glutathione transferase were synthesized and expressed in Escherichia coli, and the catalytic activities of the proteins determined with alternative substrates. Sequence–activity relationships derived from the infologs were used to design a second set of 47 infologs in which 90% of the members exceeded wild-type properties. Two mutants, C2 (V55I/E95D/D108E/A160V) and G5 (F13L/C70A/G122E), were further functionally characterized. The activities of the infologs with the alternative substrates 1-chloro-2,4-dinitrobenzene and phenethyl isothiocyanate, subject to different chemistries, were positively correlated, indicating that the examined mutations were affecting the overall catalytic competence without major shift in substrate discrimination. By contrast, the enhanced protein expressivity observed in many of the mutants were not similarly correlated with the activities. In conclusion, small libraries of well-defined infologs can be used to systematically explore sequence space to optimize proteins in multidimensional functional space. Oxford University Press 2017-08 2017-08-30 /pmc/articles/PMC5914380/ /pubmed/28967959 http://dx.doi.org/10.1093/protein/gzx045 Text en © The Author 2017. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Article Musdal, Yaman Govindarajan, Sridhar Mannervik, Bengt Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants |
title | Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants |
title_full | Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants |
title_fullStr | Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants |
title_full_unstemmed | Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants |
title_short | Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants |
title_sort | exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5914380/ https://www.ncbi.nlm.nih.gov/pubmed/28967959 http://dx.doi.org/10.1093/protein/gzx045 |
work_keys_str_mv | AT musdalyaman exploringsequencefunctionspaceofapoplarglutathionetransferaseusingdesignedinformationrichgenevariants AT govindarajansridhar exploringsequencefunctionspaceofapoplarglutathionetransferaseusingdesignedinformationrichgenevariants AT mannervikbengt exploringsequencefunctionspaceofapoplarglutathionetransferaseusingdesignedinformationrichgenevariants |