Cargando…

Rigid and concave, 2,4-cis-substituted azetidine derivatives: A platform for asymmetric catalysis

A series of single enantiomer, 2,4-cis-disubstituted amino azetidines were synthesised and used as ligands for copper-catalysed Henry reactions of aldehydes with nitromethane. Optimisation of ligand substituents and the reaction conditions was conducted. The enantiomeric excess of the formed product...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoshizawa, Akina, Feula, Antonio, Male, Louise, Leach, Andrew G., Fossey, John S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5916886/
https://www.ncbi.nlm.nih.gov/pubmed/29695806
http://dx.doi.org/10.1038/s41598-018-24784-3
Descripción
Sumario:A series of single enantiomer, 2,4-cis-disubstituted amino azetidines were synthesised and used as ligands for copper-catalysed Henry reactions of aldehydes with nitromethane. Optimisation of ligand substituents and the reaction conditions was conducted. The enantiomeric excess of the formed products was highest when alkyl aldehydes were employed in the reaction (>99% e.e.). The absolute stereochemistry of one representative azetidine derivative salt was determined by analysis of the Flack parameter of an XRD single crystal structure. The origin of selectivity in catalysis was investigated computationally, revealing the importance of the amino-substituent in determining the stereochemical outcome. A racemic platinum complex of a cis-disubstituted azetidine is examined by XRD single crystal structure analysis with reference to its steric parameters, and analogies to the computationally determined copper complex catalyst are drawn. A preliminary example of the use of a cis-disubstituted azetidine scaffold in thiourea H-bonding catalyst is noted in the supporting information.