Cargando…

Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease

Effort-based decision-making is a cognitive process crucial to normal motivated behaviour. Apathy is a common and disabling complication of Parkinson’s disease, but its aetiology remains unclear. Intriguingly, the neural substrates associated with apathy also subserve effort-based decision-making in...

Descripción completa

Detalles Bibliográficos
Autores principales: Le Heron, Campbell, Plant, Olivia, Manohar, Sanjay, Ang, Yuen-Siang, Jackson, Matthew, Lennox, Graham, Hu, Michele T, Husain, Masud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917786/
https://www.ncbi.nlm.nih.gov/pubmed/29672668
http://dx.doi.org/10.1093/brain/awy110
_version_ 1783317287724384256
author Le Heron, Campbell
Plant, Olivia
Manohar, Sanjay
Ang, Yuen-Siang
Jackson, Matthew
Lennox, Graham
Hu, Michele T
Husain, Masud
author_facet Le Heron, Campbell
Plant, Olivia
Manohar, Sanjay
Ang, Yuen-Siang
Jackson, Matthew
Lennox, Graham
Hu, Michele T
Husain, Masud
author_sort Le Heron, Campbell
collection PubMed
description Effort-based decision-making is a cognitive process crucial to normal motivated behaviour. Apathy is a common and disabling complication of Parkinson’s disease, but its aetiology remains unclear. Intriguingly, the neural substrates associated with apathy also subserve effort-based decision-making in animal models and humans. Furthermore, the dopaminergic system plays a core role in motivating effortful behaviour for reward, and its dysfunction has been proposed to play a crucial role in the aetiology of apathy in Parkinson’s disease. We hypothesized that disrupted effort-based decision-making underlies the syndrome of apathy in Parkinson’s disease, and that this disruption may be modulated by the dopaminergic system. An effort-based decision-making task was administered to 39 patients with Parkinson’s disease, with and without clinical apathy, ON and OFF their normal dopaminergic medications across two separate sessions, as well as 32 healthy age- and gender-matched controls. On a trial-by-trial basis, participants decided whether to accept or reject offers of monetary reward in return for exerting different levels of physical effort via handheld, individually calibrated dynamometers. Effort and reward were manipulated independently, such that offers spanned the full range of effort/reward combinations. Apathy was assessed using the Lille apathy rating scale. Motor effects of the dopamine manipulation were assessed using the Unified Parkinson’s Disease Rating Scale part three motor score. The primary outcome variable was choice (accept/decline offer) analysed using a hierarchical generalized linear mixed effects model, and the vigour of squeeze (Newtons exerted above required force). Both apathy and dopamine depletion were associated with reduced acceptance of offers. However, these effects were driven by dissociable patterns of responding. While apathy was characterized by increased rejection of predominantly low reward offers, dopamine increased responding to high effort, high reward offers, irrespective of underlying motivational state. Dopamine also exerted a main effect on motor vigour, increasing force production independently of reward offered, while apathy did not affect this measure. The findings demonstrate that disrupted effort-based decision-making underlies Parkinson’s disease apathy, but in a manner distinct to that caused by dopamine depletion. Apathy is associated with reduced incentivization by the rewarding outcomes of actions. In contrast, dopamine has a general effect in motivating behaviour for high effort, high reward options without altering the response pattern that characterizes the apathetic state. Thus, the motivational deficit observed in Parkinson’s disease appears not to be simply secondary to dopaminergic depletion of mesocorticolimbic pathways, suggesting non-dopaminergic therapeutic strategies for apathy may be important future targets.
format Online
Article
Text
id pubmed-5917786
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-59177862018-05-04 Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease Le Heron, Campbell Plant, Olivia Manohar, Sanjay Ang, Yuen-Siang Jackson, Matthew Lennox, Graham Hu, Michele T Husain, Masud Brain Original Articles Effort-based decision-making is a cognitive process crucial to normal motivated behaviour. Apathy is a common and disabling complication of Parkinson’s disease, but its aetiology remains unclear. Intriguingly, the neural substrates associated with apathy also subserve effort-based decision-making in animal models and humans. Furthermore, the dopaminergic system plays a core role in motivating effortful behaviour for reward, and its dysfunction has been proposed to play a crucial role in the aetiology of apathy in Parkinson’s disease. We hypothesized that disrupted effort-based decision-making underlies the syndrome of apathy in Parkinson’s disease, and that this disruption may be modulated by the dopaminergic system. An effort-based decision-making task was administered to 39 patients with Parkinson’s disease, with and without clinical apathy, ON and OFF their normal dopaminergic medications across two separate sessions, as well as 32 healthy age- and gender-matched controls. On a trial-by-trial basis, participants decided whether to accept or reject offers of monetary reward in return for exerting different levels of physical effort via handheld, individually calibrated dynamometers. Effort and reward were manipulated independently, such that offers spanned the full range of effort/reward combinations. Apathy was assessed using the Lille apathy rating scale. Motor effects of the dopamine manipulation were assessed using the Unified Parkinson’s Disease Rating Scale part three motor score. The primary outcome variable was choice (accept/decline offer) analysed using a hierarchical generalized linear mixed effects model, and the vigour of squeeze (Newtons exerted above required force). Both apathy and dopamine depletion were associated with reduced acceptance of offers. However, these effects were driven by dissociable patterns of responding. While apathy was characterized by increased rejection of predominantly low reward offers, dopamine increased responding to high effort, high reward offers, irrespective of underlying motivational state. Dopamine also exerted a main effect on motor vigour, increasing force production independently of reward offered, while apathy did not affect this measure. The findings demonstrate that disrupted effort-based decision-making underlies Parkinson’s disease apathy, but in a manner distinct to that caused by dopamine depletion. Apathy is associated with reduced incentivization by the rewarding outcomes of actions. In contrast, dopamine has a general effect in motivating behaviour for high effort, high reward options without altering the response pattern that characterizes the apathetic state. Thus, the motivational deficit observed in Parkinson’s disease appears not to be simply secondary to dopaminergic depletion of mesocorticolimbic pathways, suggesting non-dopaminergic therapeutic strategies for apathy may be important future targets. Oxford University Press 2018-05 2018-04-23 /pmc/articles/PMC5917786/ /pubmed/29672668 http://dx.doi.org/10.1093/brain/awy110 Text en © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Le Heron, Campbell
Plant, Olivia
Manohar, Sanjay
Ang, Yuen-Siang
Jackson, Matthew
Lennox, Graham
Hu, Michele T
Husain, Masud
Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease
title Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease
title_full Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease
title_fullStr Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease
title_full_unstemmed Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease
title_short Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease
title_sort distinct effects of apathy and dopamine on effort-based decision-making in parkinson’s disease
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917786/
https://www.ncbi.nlm.nih.gov/pubmed/29672668
http://dx.doi.org/10.1093/brain/awy110
work_keys_str_mv AT leheroncampbell distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease
AT plantolivia distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease
AT manoharsanjay distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease
AT angyuensiang distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease
AT jacksonmatthew distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease
AT lennoxgraham distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease
AT humichelet distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease
AT husainmasud distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease