Cargando…
Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease
Effort-based decision-making is a cognitive process crucial to normal motivated behaviour. Apathy is a common and disabling complication of Parkinson’s disease, but its aetiology remains unclear. Intriguingly, the neural substrates associated with apathy also subserve effort-based decision-making in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917786/ https://www.ncbi.nlm.nih.gov/pubmed/29672668 http://dx.doi.org/10.1093/brain/awy110 |
_version_ | 1783317287724384256 |
---|---|
author | Le Heron, Campbell Plant, Olivia Manohar, Sanjay Ang, Yuen-Siang Jackson, Matthew Lennox, Graham Hu, Michele T Husain, Masud |
author_facet | Le Heron, Campbell Plant, Olivia Manohar, Sanjay Ang, Yuen-Siang Jackson, Matthew Lennox, Graham Hu, Michele T Husain, Masud |
author_sort | Le Heron, Campbell |
collection | PubMed |
description | Effort-based decision-making is a cognitive process crucial to normal motivated behaviour. Apathy is a common and disabling complication of Parkinson’s disease, but its aetiology remains unclear. Intriguingly, the neural substrates associated with apathy also subserve effort-based decision-making in animal models and humans. Furthermore, the dopaminergic system plays a core role in motivating effortful behaviour for reward, and its dysfunction has been proposed to play a crucial role in the aetiology of apathy in Parkinson’s disease. We hypothesized that disrupted effort-based decision-making underlies the syndrome of apathy in Parkinson’s disease, and that this disruption may be modulated by the dopaminergic system. An effort-based decision-making task was administered to 39 patients with Parkinson’s disease, with and without clinical apathy, ON and OFF their normal dopaminergic medications across two separate sessions, as well as 32 healthy age- and gender-matched controls. On a trial-by-trial basis, participants decided whether to accept or reject offers of monetary reward in return for exerting different levels of physical effort via handheld, individually calibrated dynamometers. Effort and reward were manipulated independently, such that offers spanned the full range of effort/reward combinations. Apathy was assessed using the Lille apathy rating scale. Motor effects of the dopamine manipulation were assessed using the Unified Parkinson’s Disease Rating Scale part three motor score. The primary outcome variable was choice (accept/decline offer) analysed using a hierarchical generalized linear mixed effects model, and the vigour of squeeze (Newtons exerted above required force). Both apathy and dopamine depletion were associated with reduced acceptance of offers. However, these effects were driven by dissociable patterns of responding. While apathy was characterized by increased rejection of predominantly low reward offers, dopamine increased responding to high effort, high reward offers, irrespective of underlying motivational state. Dopamine also exerted a main effect on motor vigour, increasing force production independently of reward offered, while apathy did not affect this measure. The findings demonstrate that disrupted effort-based decision-making underlies Parkinson’s disease apathy, but in a manner distinct to that caused by dopamine depletion. Apathy is associated with reduced incentivization by the rewarding outcomes of actions. In contrast, dopamine has a general effect in motivating behaviour for high effort, high reward options without altering the response pattern that characterizes the apathetic state. Thus, the motivational deficit observed in Parkinson’s disease appears not to be simply secondary to dopaminergic depletion of mesocorticolimbic pathways, suggesting non-dopaminergic therapeutic strategies for apathy may be important future targets. |
format | Online Article Text |
id | pubmed-5917786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-59177862018-05-04 Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease Le Heron, Campbell Plant, Olivia Manohar, Sanjay Ang, Yuen-Siang Jackson, Matthew Lennox, Graham Hu, Michele T Husain, Masud Brain Original Articles Effort-based decision-making is a cognitive process crucial to normal motivated behaviour. Apathy is a common and disabling complication of Parkinson’s disease, but its aetiology remains unclear. Intriguingly, the neural substrates associated with apathy also subserve effort-based decision-making in animal models and humans. Furthermore, the dopaminergic system plays a core role in motivating effortful behaviour for reward, and its dysfunction has been proposed to play a crucial role in the aetiology of apathy in Parkinson’s disease. We hypothesized that disrupted effort-based decision-making underlies the syndrome of apathy in Parkinson’s disease, and that this disruption may be modulated by the dopaminergic system. An effort-based decision-making task was administered to 39 patients with Parkinson’s disease, with and without clinical apathy, ON and OFF their normal dopaminergic medications across two separate sessions, as well as 32 healthy age- and gender-matched controls. On a trial-by-trial basis, participants decided whether to accept or reject offers of monetary reward in return for exerting different levels of physical effort via handheld, individually calibrated dynamometers. Effort and reward were manipulated independently, such that offers spanned the full range of effort/reward combinations. Apathy was assessed using the Lille apathy rating scale. Motor effects of the dopamine manipulation were assessed using the Unified Parkinson’s Disease Rating Scale part three motor score. The primary outcome variable was choice (accept/decline offer) analysed using a hierarchical generalized linear mixed effects model, and the vigour of squeeze (Newtons exerted above required force). Both apathy and dopamine depletion were associated with reduced acceptance of offers. However, these effects were driven by dissociable patterns of responding. While apathy was characterized by increased rejection of predominantly low reward offers, dopamine increased responding to high effort, high reward offers, irrespective of underlying motivational state. Dopamine also exerted a main effect on motor vigour, increasing force production independently of reward offered, while apathy did not affect this measure. The findings demonstrate that disrupted effort-based decision-making underlies Parkinson’s disease apathy, but in a manner distinct to that caused by dopamine depletion. Apathy is associated with reduced incentivization by the rewarding outcomes of actions. In contrast, dopamine has a general effect in motivating behaviour for high effort, high reward options without altering the response pattern that characterizes the apathetic state. Thus, the motivational deficit observed in Parkinson’s disease appears not to be simply secondary to dopaminergic depletion of mesocorticolimbic pathways, suggesting non-dopaminergic therapeutic strategies for apathy may be important future targets. Oxford University Press 2018-05 2018-04-23 /pmc/articles/PMC5917786/ /pubmed/29672668 http://dx.doi.org/10.1093/brain/awy110 Text en © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Le Heron, Campbell Plant, Olivia Manohar, Sanjay Ang, Yuen-Siang Jackson, Matthew Lennox, Graham Hu, Michele T Husain, Masud Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease |
title | Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease |
title_full | Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease |
title_fullStr | Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease |
title_full_unstemmed | Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease |
title_short | Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease |
title_sort | distinct effects of apathy and dopamine on effort-based decision-making in parkinson’s disease |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917786/ https://www.ncbi.nlm.nih.gov/pubmed/29672668 http://dx.doi.org/10.1093/brain/awy110 |
work_keys_str_mv | AT leheroncampbell distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease AT plantolivia distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease AT manoharsanjay distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease AT angyuensiang distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease AT jacksonmatthew distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease AT lennoxgraham distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease AT humichelet distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease AT husainmasud distincteffectsofapathyanddopamineoneffortbaseddecisionmakinginparkinsonsdisease |