Cargando…

A Novel Tetracyclic Peptide, Trapoxin, Induces Phenotypic Change from Transformed to Normal in sis‐Oncogene‐transformed NIH3T3 Cells

A novel tetra cyclic peptide, trapoxin [cyclo(L‐phenylalanyl‐L‐phenylalanyl‐D‐pipecolinyl‐L‐2‐amino‐8‐oxo‐9,10‐epoxy‐decanoyl)], was found to induce the flat phenotype in v‐sis‐transformed NIH3T3 cells at a quite low concentration of 1 ng/ml. Actin stress fiber could be detected after trapoxin treat...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoshida, Hiroshi, Sugita, Kenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918831/
https://www.ncbi.nlm.nih.gov/pubmed/1506265
http://dx.doi.org/10.1111/j.1349-7006.1992.tb00109.x
_version_ 1783317500904079360
author Yoshida, Hiroshi
Sugita, Kenji
author_facet Yoshida, Hiroshi
Sugita, Kenji
author_sort Yoshida, Hiroshi
collection PubMed
description A novel tetra cyclic peptide, trapoxin [cyclo(L‐phenylalanyl‐L‐phenylalanyl‐D‐pipecolinyl‐L‐2‐amino‐8‐oxo‐9,10‐epoxy‐decanoyl)], was found to induce the flat phenotype in v‐sis‐transformed NIH3T3 cells at a quite low concentration of 1 ng/ml. Actin stress fiber could be detected after trapoxin treatment. Almost complete reversion into the flat phenotype was observed at 6 h after the administration of the compound. The effect of trapoxin was reversible, when the cell culture was incubated for more than 24 h after its removal. The intracellular level of sis‐mRNA did not decrease with trapoxin treatment at a concentration (50 ng/ml), sufficient to reverse the transformed morphology. Substitution of pipecolinic acid with proline in trapoxin did not change the activity. WF3161, in which leucine was substituted for a phenylalanine of trapoxin, showed only one‐sixteenth of the activity of trapoxin. Reduction of the epoxide residue of trapoxin destroyed the activity.
format Online
Article
Text
id pubmed-5918831
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-59188312018-05-11 A Novel Tetracyclic Peptide, Trapoxin, Induces Phenotypic Change from Transformed to Normal in sis‐Oncogene‐transformed NIH3T3 Cells Yoshida, Hiroshi Sugita, Kenji Jpn J Cancer Res Rapid Communication A novel tetra cyclic peptide, trapoxin [cyclo(L‐phenylalanyl‐L‐phenylalanyl‐D‐pipecolinyl‐L‐2‐amino‐8‐oxo‐9,10‐epoxy‐decanoyl)], was found to induce the flat phenotype in v‐sis‐transformed NIH3T3 cells at a quite low concentration of 1 ng/ml. Actin stress fiber could be detected after trapoxin treatment. Almost complete reversion into the flat phenotype was observed at 6 h after the administration of the compound. The effect of trapoxin was reversible, when the cell culture was incubated for more than 24 h after its removal. The intracellular level of sis‐mRNA did not decrease with trapoxin treatment at a concentration (50 ng/ml), sufficient to reverse the transformed morphology. Substitution of pipecolinic acid with proline in trapoxin did not change the activity. WF3161, in which leucine was substituted for a phenylalanine of trapoxin, showed only one‐sixteenth of the activity of trapoxin. Reduction of the epoxide residue of trapoxin destroyed the activity. Blackwell Publishing Ltd 1992-04 /pmc/articles/PMC5918831/ /pubmed/1506265 http://dx.doi.org/10.1111/j.1349-7006.1992.tb00109.x Text en
spellingShingle Rapid Communication
Yoshida, Hiroshi
Sugita, Kenji
A Novel Tetracyclic Peptide, Trapoxin, Induces Phenotypic Change from Transformed to Normal in sis‐Oncogene‐transformed NIH3T3 Cells
title A Novel Tetracyclic Peptide, Trapoxin, Induces Phenotypic Change from Transformed to Normal in sis‐Oncogene‐transformed NIH3T3 Cells
title_full A Novel Tetracyclic Peptide, Trapoxin, Induces Phenotypic Change from Transformed to Normal in sis‐Oncogene‐transformed NIH3T3 Cells
title_fullStr A Novel Tetracyclic Peptide, Trapoxin, Induces Phenotypic Change from Transformed to Normal in sis‐Oncogene‐transformed NIH3T3 Cells
title_full_unstemmed A Novel Tetracyclic Peptide, Trapoxin, Induces Phenotypic Change from Transformed to Normal in sis‐Oncogene‐transformed NIH3T3 Cells
title_short A Novel Tetracyclic Peptide, Trapoxin, Induces Phenotypic Change from Transformed to Normal in sis‐Oncogene‐transformed NIH3T3 Cells
title_sort novel tetracyclic peptide, trapoxin, induces phenotypic change from transformed to normal in sis‐oncogene‐transformed nih3t3 cells
topic Rapid Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918831/
https://www.ncbi.nlm.nih.gov/pubmed/1506265
http://dx.doi.org/10.1111/j.1349-7006.1992.tb00109.x
work_keys_str_mv AT yoshidahiroshi anoveltetracyclicpeptidetrapoxininducesphenotypicchangefromtransformedtonormalinsisoncogenetransformednih3t3cells
AT sugitakenji anoveltetracyclicpeptidetrapoxininducesphenotypicchangefromtransformedtonormalinsisoncogenetransformednih3t3cells
AT yoshidahiroshi noveltetracyclicpeptidetrapoxininducesphenotypicchangefromtransformedtonormalinsisoncogenetransformednih3t3cells
AT sugitakenji noveltetracyclicpeptidetrapoxininducesphenotypicchangefromtransformedtonormalinsisoncogenetransformednih3t3cells