Cargando…

Analysis of human MutS homolog 2 missense mutations in patients with colorectal cancer

Germline mutations of DNA mismatch repair gene human MutS homolog 2 (hMSH2) are associated with hereditary nonpolyposis colorectal cancer (HNPCC). A total of one-third of these mutations are missense mutations. Several hMSH2 missense mutations have been identified in patients in East Asia, although...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaomei, Chen, Senqing, Yu, Jun, Zhang, Yuanying, Lv, Min, Zhu, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920917/
https://www.ncbi.nlm.nih.gov/pubmed/29731845
http://dx.doi.org/10.3892/ol.2018.8161
Descripción
Sumario:Germline mutations of DNA mismatch repair gene human MutS homolog 2 (hMSH2) are associated with hereditary nonpolyposis colorectal cancer (HNPCC). A total of one-third of these mutations are missense mutations. Several hMSH2 missense mutations have been identified in patients in East Asia, although their function has not been evaluated. In the present study, the role of ten hMSH2 missense mutations in the pathogenesis of colorectal cancer was examined. The hMSH2/hMSH6 protein interaction system was established using yeast two-hybrid screening. Next, the missense mutations were analyzed for their ability to affect the protein interaction of hMSH2 with its partner hMSH6. Additionally, the Sorting Intolerant from Tolerant tool was applied to predict the effects of different amino acid substitutions. The results demonstrated that certain hMSH2 mutations (L173R and C199R) caused a significant functional change in the human hMutSα complex and were identified to be pathological mutations. The Y408C, D603Y, P696L and S703Y mutations partially affected interaction and partly affected the function of hMSH2. The remaining four variants, T8M, I169V, A370T and Q419K, may be non-functional polymorphisms or could affect protein function through other molecular mechanisms. The present study evaluated the functional consequences of previously unknown missense mutations in hMSH2, and may contribute to improved clinical diagnosis and mutation screening of HNPCC.