Cargando…

Spider toxin inhibits gating pore currents underlying periodic paralysis

Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel Na(V)1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these...

Descripción completa

Detalles Bibliográficos
Autores principales: Männikkö, Roope, Shenkarev, Zakhar O., Thor, Michael G., Berkut, Antonina A., Myshkin, Mikhail Yu, Paramonov, Alexander S., Kulbatskii, Dmitrii S., Kuzmin, Dmitry A., Sampedro Castañeda, Marisol, King, Louise, Wilson, Emma R., Lyukmanova, Ekaterina N., Kirpichnikov, Mikhail P., Schorge, Stephanie, Bosmans, Frank, Hanna, Michael G., Kullmann, Dimitri M., Vassilevski, Alexander A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924911/
https://www.ncbi.nlm.nih.gov/pubmed/29636418
http://dx.doi.org/10.1073/pnas.1720185115
_version_ 1783318612893761536
author Männikkö, Roope
Shenkarev, Zakhar O.
Thor, Michael G.
Berkut, Antonina A.
Myshkin, Mikhail Yu
Paramonov, Alexander S.
Kulbatskii, Dmitrii S.
Kuzmin, Dmitry A.
Sampedro Castañeda, Marisol
King, Louise
Wilson, Emma R.
Lyukmanova, Ekaterina N.
Kirpichnikov, Mikhail P.
Schorge, Stephanie
Bosmans, Frank
Hanna, Michael G.
Kullmann, Dimitri M.
Vassilevski, Alexander A.
author_facet Männikkö, Roope
Shenkarev, Zakhar O.
Thor, Michael G.
Berkut, Antonina A.
Myshkin, Mikhail Yu
Paramonov, Alexander S.
Kulbatskii, Dmitrii S.
Kuzmin, Dmitry A.
Sampedro Castañeda, Marisol
King, Louise
Wilson, Emma R.
Lyukmanova, Ekaterina N.
Kirpichnikov, Mikhail P.
Schorge, Stephanie
Bosmans, Frank
Hanna, Michael G.
Kullmann, Dimitri M.
Vassilevski, Alexander A.
author_sort Männikkö, Roope
collection PubMed
description Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel Na(V)1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.
format Online
Article
Text
id pubmed-5924911
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-59249112018-04-30 Spider toxin inhibits gating pore currents underlying periodic paralysis Männikkö, Roope Shenkarev, Zakhar O. Thor, Michael G. Berkut, Antonina A. Myshkin, Mikhail Yu Paramonov, Alexander S. Kulbatskii, Dmitrii S. Kuzmin, Dmitry A. Sampedro Castañeda, Marisol King, Louise Wilson, Emma R. Lyukmanova, Ekaterina N. Kirpichnikov, Mikhail P. Schorge, Stephanie Bosmans, Frank Hanna, Michael G. Kullmann, Dimitri M. Vassilevski, Alexander A. Proc Natl Acad Sci U S A Biological Sciences Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel Na(V)1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP. National Academy of Sciences 2018-04-24 2018-04-10 /pmc/articles/PMC5924911/ /pubmed/29636418 http://dx.doi.org/10.1073/pnas.1720185115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Männikkö, Roope
Shenkarev, Zakhar O.
Thor, Michael G.
Berkut, Antonina A.
Myshkin, Mikhail Yu
Paramonov, Alexander S.
Kulbatskii, Dmitrii S.
Kuzmin, Dmitry A.
Sampedro Castañeda, Marisol
King, Louise
Wilson, Emma R.
Lyukmanova, Ekaterina N.
Kirpichnikov, Mikhail P.
Schorge, Stephanie
Bosmans, Frank
Hanna, Michael G.
Kullmann, Dimitri M.
Vassilevski, Alexander A.
Spider toxin inhibits gating pore currents underlying periodic paralysis
title Spider toxin inhibits gating pore currents underlying periodic paralysis
title_full Spider toxin inhibits gating pore currents underlying periodic paralysis
title_fullStr Spider toxin inhibits gating pore currents underlying periodic paralysis
title_full_unstemmed Spider toxin inhibits gating pore currents underlying periodic paralysis
title_short Spider toxin inhibits gating pore currents underlying periodic paralysis
title_sort spider toxin inhibits gating pore currents underlying periodic paralysis
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924911/
https://www.ncbi.nlm.nih.gov/pubmed/29636418
http://dx.doi.org/10.1073/pnas.1720185115
work_keys_str_mv AT mannikkoroope spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT shenkarevzakharo spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT thormichaelg spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT berkutantoninaa spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT myshkinmikhailyu spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT paramonovalexanders spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT kulbatskiidmitriis spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT kuzmindmitrya spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT sampedrocastanedamarisol spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT kinglouise spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT wilsonemmar spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT lyukmanovaekaterinan spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT kirpichnikovmikhailp spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT schorgestephanie spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT bosmansfrank spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT hannamichaelg spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT kullmanndimitrim spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis
AT vassilevskialexandera spidertoxininhibitsgatingporecurrentsunderlyingperiodicparalysis