Cargando…

RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems

Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53–MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major dra...

Descripción completa

Detalles Bibliográficos
Autores principales: Shin, Daiha, Kim, Eun Hye, Lee, Jaewang, Roh, Jong-Lyel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925444/
https://www.ncbi.nlm.nih.gov/pubmed/28582730
http://dx.doi.org/10.1016/j.redox.2017.05.025
_version_ 1783318715787378688
author Shin, Daiha
Kim, Eun Hye
Lee, Jaewang
Roh, Jong-Lyel
author_facet Shin, Daiha
Kim, Eun Hye
Lee, Jaewang
Roh, Jong-Lyel
author_sort Shin, Daiha
collection PubMed
description Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53–MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we found a novel resistance mechanism of RITA treatment and an effective combined treatment to overcome RITA resistance in head and neck cancer (HNC) cells. The effects of RITA and 3-methyladenine (3-MA) were tested in different HNC cell lines, including cisplatin-resistant and acquired RITA-resistant HNC cells. The effects of each drug alone and in combination were assessed by measuring cell viability, apoptosis, cell cycle, glutathione, reactive oxygen species, protein expression, genetic inhibition of p62 and Nrf2, and a mouse xenograft model of cisplatin-resistant HNC. RITA induced apoptosis of HNC cells at different levels without significantly inhibiting normal cell viability. Following RITA treatment, RITA-resistant HNC cells exhibited a sustained expression of other autophagy-related proteins, overexpressed p62, and displayed activation of the Keap1-Nrf2 antioxidant pathway. The autophagy inhibitor 3-MA sensitized resistant HNC cells to RITA treatment via the dual inhibition of molecules related to the autophagy and antioxidant systems. Silencing of the p62 gene augmented the combined effects. The effective antitumor activity of RITA plus 3-MA was also confirmed in vivo in mouse xenograft models transplanted with resistant HNC cells, showing increased oxidative stress and DNA damage. The results indicate that RITA plus 3-MA can help overcome RITA resistance in HNC cells. CONDENSED ABSTRACT: This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual inhibition of autophagy and antioxidant systems in vitro and in vivo.
format Online
Article
Text
id pubmed-5925444
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-59254442018-05-01 RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems Shin, Daiha Kim, Eun Hye Lee, Jaewang Roh, Jong-Lyel Redox Biol Research Paper Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53–MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we found a novel resistance mechanism of RITA treatment and an effective combined treatment to overcome RITA resistance in head and neck cancer (HNC) cells. The effects of RITA and 3-methyladenine (3-MA) were tested in different HNC cell lines, including cisplatin-resistant and acquired RITA-resistant HNC cells. The effects of each drug alone and in combination were assessed by measuring cell viability, apoptosis, cell cycle, glutathione, reactive oxygen species, protein expression, genetic inhibition of p62 and Nrf2, and a mouse xenograft model of cisplatin-resistant HNC. RITA induced apoptosis of HNC cells at different levels without significantly inhibiting normal cell viability. Following RITA treatment, RITA-resistant HNC cells exhibited a sustained expression of other autophagy-related proteins, overexpressed p62, and displayed activation of the Keap1-Nrf2 antioxidant pathway. The autophagy inhibitor 3-MA sensitized resistant HNC cells to RITA treatment via the dual inhibition of molecules related to the autophagy and antioxidant systems. Silencing of the p62 gene augmented the combined effects. The effective antitumor activity of RITA plus 3-MA was also confirmed in vivo in mouse xenograft models transplanted with resistant HNC cells, showing increased oxidative stress and DNA damage. The results indicate that RITA plus 3-MA can help overcome RITA resistance in HNC cells. CONDENSED ABSTRACT: This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual inhibition of autophagy and antioxidant systems in vitro and in vivo. Elsevier 2017-06-01 /pmc/articles/PMC5925444/ /pubmed/28582730 http://dx.doi.org/10.1016/j.redox.2017.05.025 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Shin, Daiha
Kim, Eun Hye
Lee, Jaewang
Roh, Jong-Lyel
RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems
title RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems
title_full RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems
title_fullStr RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems
title_full_unstemmed RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems
title_short RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems
title_sort rita plus 3-ma overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925444/
https://www.ncbi.nlm.nih.gov/pubmed/28582730
http://dx.doi.org/10.1016/j.redox.2017.05.025
work_keys_str_mv AT shindaiha ritaplus3maovercomeschemoresistanceofheadandneckcancercellsviadualinhibitionofautophagyandantioxidantsystems
AT kimeunhye ritaplus3maovercomeschemoresistanceofheadandneckcancercellsviadualinhibitionofautophagyandantioxidantsystems
AT leejaewang ritaplus3maovercomeschemoresistanceofheadandneckcancercellsviadualinhibitionofautophagyandantioxidantsystems
AT rohjonglyel ritaplus3maovercomeschemoresistanceofheadandneckcancercellsviadualinhibitionofautophagyandantioxidantsystems