Cargando…
RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems
Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53–MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major dra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925444/ https://www.ncbi.nlm.nih.gov/pubmed/28582730 http://dx.doi.org/10.1016/j.redox.2017.05.025 |
_version_ | 1783318715787378688 |
---|---|
author | Shin, Daiha Kim, Eun Hye Lee, Jaewang Roh, Jong-Lyel |
author_facet | Shin, Daiha Kim, Eun Hye Lee, Jaewang Roh, Jong-Lyel |
author_sort | Shin, Daiha |
collection | PubMed |
description | Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53–MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we found a novel resistance mechanism of RITA treatment and an effective combined treatment to overcome RITA resistance in head and neck cancer (HNC) cells. The effects of RITA and 3-methyladenine (3-MA) were tested in different HNC cell lines, including cisplatin-resistant and acquired RITA-resistant HNC cells. The effects of each drug alone and in combination were assessed by measuring cell viability, apoptosis, cell cycle, glutathione, reactive oxygen species, protein expression, genetic inhibition of p62 and Nrf2, and a mouse xenograft model of cisplatin-resistant HNC. RITA induced apoptosis of HNC cells at different levels without significantly inhibiting normal cell viability. Following RITA treatment, RITA-resistant HNC cells exhibited a sustained expression of other autophagy-related proteins, overexpressed p62, and displayed activation of the Keap1-Nrf2 antioxidant pathway. The autophagy inhibitor 3-MA sensitized resistant HNC cells to RITA treatment via the dual inhibition of molecules related to the autophagy and antioxidant systems. Silencing of the p62 gene augmented the combined effects. The effective antitumor activity of RITA plus 3-MA was also confirmed in vivo in mouse xenograft models transplanted with resistant HNC cells, showing increased oxidative stress and DNA damage. The results indicate that RITA plus 3-MA can help overcome RITA resistance in HNC cells. CONDENSED ABSTRACT: This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual inhibition of autophagy and antioxidant systems in vitro and in vivo. |
format | Online Article Text |
id | pubmed-5925444 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-59254442018-05-01 RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems Shin, Daiha Kim, Eun Hye Lee, Jaewang Roh, Jong-Lyel Redox Biol Research Paper Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53–MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we found a novel resistance mechanism of RITA treatment and an effective combined treatment to overcome RITA resistance in head and neck cancer (HNC) cells. The effects of RITA and 3-methyladenine (3-MA) were tested in different HNC cell lines, including cisplatin-resistant and acquired RITA-resistant HNC cells. The effects of each drug alone and in combination were assessed by measuring cell viability, apoptosis, cell cycle, glutathione, reactive oxygen species, protein expression, genetic inhibition of p62 and Nrf2, and a mouse xenograft model of cisplatin-resistant HNC. RITA induced apoptosis of HNC cells at different levels without significantly inhibiting normal cell viability. Following RITA treatment, RITA-resistant HNC cells exhibited a sustained expression of other autophagy-related proteins, overexpressed p62, and displayed activation of the Keap1-Nrf2 antioxidant pathway. The autophagy inhibitor 3-MA sensitized resistant HNC cells to RITA treatment via the dual inhibition of molecules related to the autophagy and antioxidant systems. Silencing of the p62 gene augmented the combined effects. The effective antitumor activity of RITA plus 3-MA was also confirmed in vivo in mouse xenograft models transplanted with resistant HNC cells, showing increased oxidative stress and DNA damage. The results indicate that RITA plus 3-MA can help overcome RITA resistance in HNC cells. CONDENSED ABSTRACT: This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual inhibition of autophagy and antioxidant systems in vitro and in vivo. Elsevier 2017-06-01 /pmc/articles/PMC5925444/ /pubmed/28582730 http://dx.doi.org/10.1016/j.redox.2017.05.025 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Shin, Daiha Kim, Eun Hye Lee, Jaewang Roh, Jong-Lyel RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems |
title | RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems |
title_full | RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems |
title_fullStr | RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems |
title_full_unstemmed | RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems |
title_short | RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems |
title_sort | rita plus 3-ma overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925444/ https://www.ncbi.nlm.nih.gov/pubmed/28582730 http://dx.doi.org/10.1016/j.redox.2017.05.025 |
work_keys_str_mv | AT shindaiha ritaplus3maovercomeschemoresistanceofheadandneckcancercellsviadualinhibitionofautophagyandantioxidantsystems AT kimeunhye ritaplus3maovercomeschemoresistanceofheadandneckcancercellsviadualinhibitionofautophagyandantioxidantsystems AT leejaewang ritaplus3maovercomeschemoresistanceofheadandneckcancercellsviadualinhibitionofautophagyandantioxidantsystems AT rohjonglyel ritaplus3maovercomeschemoresistanceofheadandneckcancercellsviadualinhibitionofautophagyandantioxidantsystems |