Cargando…
DeepSynergy: predicting anti-cancer drug synergy with Deep Learning
MOTIVATION: While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinatio...
Autores principales: | Preuer, Kristina, Lewis, Richard P I, Hochreiter, Sepp, Bender, Andreas, Bulusu, Krishna C, Klambauer, Günter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925774/ https://www.ncbi.nlm.nih.gov/pubmed/29253077 http://dx.doi.org/10.1093/bioinformatics/btx806 |
Ejemplares similares
-
DeepTraSynergy: drug combinations using multimodal deep learning with transformers
por: Rafiei, Fatemeh, et al.
Publicado: (2023) -
SYNDEEP: a deep learning approach for the prediction of cancer drugs synergy
por: Torkamannia, Anna, et al.
Publicado: (2023) -
A systematic evaluation of deep learning methods for the prediction of drug synergy in cancer
por: Baptista, Delora, et al.
Publicado: (2023) -
Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies
por: She, Shengnan, et al.
Publicado: (2022) -
MARSY: a multitask deep-learning framework for prediction of drug combination synergy scores
por: El Khili, Mohamed Reda, et al.
Publicado: (2023)