Cargando…

Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance

The FRH (frequency-interacting RNA helicase) protein is the Neurospora crassa homolog of yeast Mtr4, an essential RNA helicase that plays a central role in RNA metabolism as an activator of the nuclear RNA exosome. FRH is also a required component of the circadian clock, mediating protein interactio...

Descripción completa

Detalles Bibliográficos
Autores principales: Morales, Yalemi, Olsen, Keith J., Bulcher, Jacqueline M., Johnson, Sean J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931499/
https://www.ncbi.nlm.nih.gov/pubmed/29718972
http://dx.doi.org/10.1371/journal.pone.0196642
_version_ 1783319646624022528
author Morales, Yalemi
Olsen, Keith J.
Bulcher, Jacqueline M.
Johnson, Sean J.
author_facet Morales, Yalemi
Olsen, Keith J.
Bulcher, Jacqueline M.
Johnson, Sean J.
author_sort Morales, Yalemi
collection PubMed
description The FRH (frequency-interacting RNA helicase) protein is the Neurospora crassa homolog of yeast Mtr4, an essential RNA helicase that plays a central role in RNA metabolism as an activator of the nuclear RNA exosome. FRH is also a required component of the circadian clock, mediating protein interactions that result in the rhythmic repression of gene expression. Here we show that FRH unwinds RNA substrates in vitro with a kinetic profile similar to Mtr4, indicating that while FRH has acquired additional functionality, its core helicase function remains intact. In contrast with the earlier FRH structures, a new crystal form of FRH results in an ATP binding site that is undisturbed by crystal contacts and adopts a conformation consistent with nucleotide binding and hydrolysis. Strikingly, this new FRH structure adopts an arch domain conformation that is dramatically altered from previous structures. Comparison of the existing FRH structures reveals conserved hinge points that appear to facilitate arch motion. Regions in the arch have been previously shown to mediate a variety of protein-protein interactions critical for RNA surveillance and circadian clock functions. The conformational changes highlighted in the FRH structures provide a platform for investigating the relationship between arch dynamics and Mtr4/FRH function.
format Online
Article
Text
id pubmed-5931499
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-59314992018-05-11 Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance Morales, Yalemi Olsen, Keith J. Bulcher, Jacqueline M. Johnson, Sean J. PLoS One Research Article The FRH (frequency-interacting RNA helicase) protein is the Neurospora crassa homolog of yeast Mtr4, an essential RNA helicase that plays a central role in RNA metabolism as an activator of the nuclear RNA exosome. FRH is also a required component of the circadian clock, mediating protein interactions that result in the rhythmic repression of gene expression. Here we show that FRH unwinds RNA substrates in vitro with a kinetic profile similar to Mtr4, indicating that while FRH has acquired additional functionality, its core helicase function remains intact. In contrast with the earlier FRH structures, a new crystal form of FRH results in an ATP binding site that is undisturbed by crystal contacts and adopts a conformation consistent with nucleotide binding and hydrolysis. Strikingly, this new FRH structure adopts an arch domain conformation that is dramatically altered from previous structures. Comparison of the existing FRH structures reveals conserved hinge points that appear to facilitate arch motion. Regions in the arch have been previously shown to mediate a variety of protein-protein interactions critical for RNA surveillance and circadian clock functions. The conformational changes highlighted in the FRH structures provide a platform for investigating the relationship between arch dynamics and Mtr4/FRH function. Public Library of Science 2018-05-02 /pmc/articles/PMC5931499/ /pubmed/29718972 http://dx.doi.org/10.1371/journal.pone.0196642 Text en © 2018 Morales et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Morales, Yalemi
Olsen, Keith J.
Bulcher, Jacqueline M.
Johnson, Sean J.
Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance
title Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance
title_full Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance
title_fullStr Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance
title_full_unstemmed Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance
title_short Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance
title_sort structure of frequency-interacting rna helicase from neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and rna surveillance
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931499/
https://www.ncbi.nlm.nih.gov/pubmed/29718972
http://dx.doi.org/10.1371/journal.pone.0196642
work_keys_str_mv AT moralesyalemi structureoffrequencyinteractingrnahelicasefromneurosporacrassarevealshighflexibilityinadomaincriticalforcircadianrhythmandrnasurveillance
AT olsenkeithj structureoffrequencyinteractingrnahelicasefromneurosporacrassarevealshighflexibilityinadomaincriticalforcircadianrhythmandrnasurveillance
AT bulcherjacquelinem structureoffrequencyinteractingrnahelicasefromneurosporacrassarevealshighflexibilityinadomaincriticalforcircadianrhythmandrnasurveillance
AT johnsonseanj structureoffrequencyinteractingrnahelicasefromneurosporacrassarevealshighflexibilityinadomaincriticalforcircadianrhythmandrnasurveillance