Cargando…
Reconstructing spatial organizations of chromosomes through manifold learning
Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genom...
Autores principales: | Zhu, Guangxiang, Deng, Wenxuan, Hu, Hailin, Ma, Rui, Zhang, Sai, Yang, Jinglin, Peng, Jian, Kaplan, Tommy, Zeng, Jianyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934626/ https://www.ncbi.nlm.nih.gov/pubmed/29408992 http://dx.doi.org/10.1093/nar/gky065 |
Ejemplares similares
-
A deep learning framework for modeling structural features of RNA-binding protein targets
por: Zhang, Sai, et al.
Publicado: (2016) -
Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data
por: Trieu, Tuan, et al.
Publicado: (2014) -
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data
por: Li, Shuya, et al.
Publicado: (2017) -
Inferential modeling of 3D chromatin structure
por: Wang, Siyu, et al.
Publicado: (2015)