Cargando…
Structural confirmation of sulconazole sulfoxide as the primary degradation product of sulconazole nitrate
Sulconazole has been reported to degrade into sulconazole sulfoxide via sulfur oxidation; however, structural characterization data was lacking and the potential formation of an N-oxide or sulfone could not be excluded. To clarify the degradation pathways and incorporate the impurity profile of sulc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Xi'an Jiaotong University
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934740/ https://www.ncbi.nlm.nih.gov/pubmed/29736295 http://dx.doi.org/10.1016/j.jpha.2017.12.007 |
Sumario: | Sulconazole has been reported to degrade into sulconazole sulfoxide via sulfur oxidation; however, structural characterization data was lacking and the potential formation of an N-oxide or sulfone could not be excluded. To clarify the degradation pathways and incorporate the impurity profile of sulconazole into the United States Pharmacopeia–National Formulary (USP–NF) monographs, a multifaceted approach was utilized to confirm the identity of the degradant. The approach combines stress testing of sulconazole nitrate, chemical synthesis of the degradant via a hydrogen peroxide-mediated oxidation reaction, semi-preparative HPLC purification, and structural elucidation by LC–MS/MS and NMR spectroscopy. Structural determination was primarily based on the comparison of spectroscopic data of sulconazole and the oxidative degradant. The mass spectrometric data have revealed a McLafferty-type rearrangement as the characteristic fragmentation pathway for alkyl sulfoxides with a β-hydrogen atom, and was used to distinguish the sulfoxide from N-oxide or sulfone derivatives. Moreover, the generated sulconazole sulfoxide was utilized as reference material for compendial procedure development and validation, which provides support for USP monograph modernization. |
---|