Cargando…
Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis
Tumourigenic tissue uses modified metabolic signalling pathways in order to support hyperproliferation and survival. Cancer-associated aerobic glycolysis resulting in lactic acid production was described nearly 100 years ago. Furthermore, increased reactive oxygen species (ROS) and lactate quantitie...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935986/ https://www.ncbi.nlm.nih.gov/pubmed/29760743 http://dx.doi.org/10.1186/s11658-018-0088-y |
_version_ | 1783320370466521088 |
---|---|
author | Gwangwa, Mokgadi Violet Joubert, Anna Margaretha Visagie, Michelle Helen |
author_facet | Gwangwa, Mokgadi Violet Joubert, Anna Margaretha Visagie, Michelle Helen |
author_sort | Gwangwa, Mokgadi Violet |
collection | PubMed |
description | Tumourigenic tissue uses modified metabolic signalling pathways in order to support hyperproliferation and survival. Cancer-associated aerobic glycolysis resulting in lactic acid production was described nearly 100 years ago. Furthermore, increased reactive oxygen species (ROS) and lactate quantities increase metabolic, survival and proliferation signalling, resulting in increased tumourigenesis. In order to maintain redox balance, the cell possesses innate antioxidant defence systems such as superoxide dismutase, catalase and glutathione. Several stimuli including cells deprived of nutrients or failure of antioxidant systems result in oxidative stress and cell death induction. Among the cell death machinery is autophagy, a compensatory mechanism whereby energy is produced from damaged and/or redundant organelles and proteins, which prevents the accumulation of waste products, thereby maintaining homeostasis. Furthermore, autophagy is maintained by several pathways including phosphoinositol 3 kinases, the mitogen-activated protein kinase family, hypoxia-inducible factor, avian myelocytomatosis viral oncogene homolog and protein kinase receptor-like endoplasmic reticulum kinase. The persistent potential of cancer metabolism, redox regulation and the crosstalk with autophagy in scientific investigation pertains to its ability to uncover essential aspects of tumourigenic transformation. This may result in clinical translational possibilities to exploit tumourigenic oxidative status and autophagy to advance our capabilities to diagnose, monitor and treat cancer. |
format | Online Article Text |
id | pubmed-5935986 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-59359862018-05-14 Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis Gwangwa, Mokgadi Violet Joubert, Anna Margaretha Visagie, Michelle Helen Cell Mol Biol Lett Review Tumourigenic tissue uses modified metabolic signalling pathways in order to support hyperproliferation and survival. Cancer-associated aerobic glycolysis resulting in lactic acid production was described nearly 100 years ago. Furthermore, increased reactive oxygen species (ROS) and lactate quantities increase metabolic, survival and proliferation signalling, resulting in increased tumourigenesis. In order to maintain redox balance, the cell possesses innate antioxidant defence systems such as superoxide dismutase, catalase and glutathione. Several stimuli including cells deprived of nutrients or failure of antioxidant systems result in oxidative stress and cell death induction. Among the cell death machinery is autophagy, a compensatory mechanism whereby energy is produced from damaged and/or redundant organelles and proteins, which prevents the accumulation of waste products, thereby maintaining homeostasis. Furthermore, autophagy is maintained by several pathways including phosphoinositol 3 kinases, the mitogen-activated protein kinase family, hypoxia-inducible factor, avian myelocytomatosis viral oncogene homolog and protein kinase receptor-like endoplasmic reticulum kinase. The persistent potential of cancer metabolism, redox regulation and the crosstalk with autophagy in scientific investigation pertains to its ability to uncover essential aspects of tumourigenic transformation. This may result in clinical translational possibilities to exploit tumourigenic oxidative status and autophagy to advance our capabilities to diagnose, monitor and treat cancer. BioMed Central 2018-05-04 /pmc/articles/PMC5935986/ /pubmed/29760743 http://dx.doi.org/10.1186/s11658-018-0088-y Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Review Gwangwa, Mokgadi Violet Joubert, Anna Margaretha Visagie, Michelle Helen Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis |
title | Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis |
title_full | Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis |
title_fullStr | Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis |
title_full_unstemmed | Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis |
title_short | Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis |
title_sort | crosstalk between the warburg effect, redox regulation and autophagy induction in tumourigenesis |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935986/ https://www.ncbi.nlm.nih.gov/pubmed/29760743 http://dx.doi.org/10.1186/s11658-018-0088-y |
work_keys_str_mv | AT gwangwamokgadiviolet crosstalkbetweenthewarburgeffectredoxregulationandautophagyinductionintumourigenesis AT joubertannamargaretha crosstalkbetweenthewarburgeffectredoxregulationandautophagyinductionintumourigenesis AT visagiemichellehelen crosstalkbetweenthewarburgeffectredoxregulationandautophagyinductionintumourigenesis |