Cargando…
Inducible Genome Editing with Conditional CRISPR/Cas9 Mice
Genetically engineered mouse models (GEMMs) are powerful tools by which to probe gene function in vivo, obtain insight into disease etiology, and identify modifiers of drug response. Increased sophistication of GEMMs has led to the design of tissue-specific and inducible models in which genes of int...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940154/ https://www.ncbi.nlm.nih.gov/pubmed/29519936 http://dx.doi.org/10.1534/g3.117.300327 |
Sumario: | Genetically engineered mouse models (GEMMs) are powerful tools by which to probe gene function in vivo, obtain insight into disease etiology, and identify modifiers of drug response. Increased sophistication of GEMMs has led to the design of tissue-specific and inducible models in which genes of interest are expressed or ablated in defined tissues or cellular subtypes. Here we describe the generation of a transgenic mouse harboring a doxycycline-regulated Cas9 allele for inducible genome engineering. This model provides a flexible platform for genome engineering since editing is achieved by exogenous delivery of sgRNAs and should allow for the modeling of a range of biological and pathological processes. |
---|